首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new conjugated copolymers based on the moiety of bis(4‐hexylthiophen‐2‐yl)‐6,7‐diheptyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline (BTHTQ) were synthesized and characterized, including poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) (PBTHTQ), poly‐(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo‐[3,4‐g]quinoxaline‐alt‐2,5‐thiophene) (PTTHTQ), poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl) [1,2,5]‐thiadiazolo‐[3,4‐g]quinoxaline‐alt‐9,9‐dioctyl‐2,7‐fluore‐ne) (PFBTHTQ), and poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline‐alt‐1,4‐bis(decyloxy)phenylene) (PPBTHTQ). The λmax of PBTHTQ, PTTHTQ, PFBTHTQ, and PPBTHTP thin films was shown at 780, 876, 734, and 710 nm, respectively, with the corresponding optical band gaps (E) of 1.31, 1.05, 1.40, and 1.43 eV. The relatively small band gaps of the synthesized polymers suggested the significance of intramolecular charge transfer between the donor and TQ moiety. The estimated hole mobilities of PBTHTQ, PTTHTQ, and PFBTHTQ‐based field effect transistor devices using CHCl3 solvent were 8.5 × 10?5, 8.5 × 10?4, and 2.8 × 10?5 cm2 V?1 s?1, respectively, but significantly enhanced to 1.6 × 10?4, 3.8 × 10?3, and 1.5 × 10?4 cm2 V?1 s?1 using high boiling point solvent of chlorobenzene (CB). The higher hole mobility of PTTHTQ than the other two copolymers was attributed from its smaller band gap or ordered morphology [wormlike (chloroform) or needle‐like (CB)]. The characteristics of small band gap and high mobility suggest the potential applications of the BTHTQ‐based conjugated copolymers in electronic and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6305–6316, 2008  相似文献   

2.
A series of new donor–acceptor‐type low‐band‐gap semiconducting polymers were synthesized as electron donors for organic photovoltaic cells. The polymers comprised quinoxaline derivatives as the acceptors and a benzodithiophene (BDT) derivative as the donors. 5,8‐Dibromoquinoxaline (Qx), 8,11‐dibromobenzo[a]phenazine (BPz), 10,13‐dibromodibenzo[a,c]phenazine (DBPz), and 8,11‐dibromo‐5‐(9H‐carbazol‐9‐yl)benzo[a]phenazine) (CBPz) were synthesized and polymerized with 2,6‐bis(trimethyltin)?4,8‐diethylhexyloxybenzo‐[1,2‐b;3,4‐b]dithiophene (BDT) through Stille cross‐coupling to produce four types of fully conjugated semiconducting polymers: PBDT‐Qx, PBDT‐BPz, PBDT‐DBPz, and PBDT‐CBPz , respectively. Intramolecular charge transfer between the electron donating and accepting units in the polymeric backbone induced a broad absorption from 300 to 800 nm. The optical band gap energies of the polymers were measured from their absorption onsets to be 1.54–1.80 eV depending on the polymer structure. Solution‐processed field‐effect transistors were fabricated to measure the hole mobilities of the polymers, and bulk hetero‐junction photovoltaic devices were fabricated using the synthesized polymers as electron donors and fullerene derivatives as electron acceptors. One of these devices showed a high power conversion efficiency of 3.87% with an open‐circuit voltage of 0.78 V, a short‐circuit current of 9.68 mA/cm2, and a fill factor of 0.51 under air mass 1.5 global (AM 1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4136–4149  相似文献   

3.
Newly designed 2H‐benzimidazole derivatives which have solubility groups at 2‐position have been synthesized and incorporated into two highly soluble carbazole based alternating copolymers, poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spirocyclohexane)] (PCDTCHBI) and poly[2,7‐(9‐(1′‐octylnonyl)‐9H‐carbazole)‐alt‐5,5‐(4′,7′‐di(thien‐2‐yl)‐2H‐benzimidazole‐2′‐spiro‐4′′‐((2′′′‐ethylhexyl)oxy)‐cyclohexane)] (PCDTEHOCHBI) for photovoltaic application. These alternating copolymers show low‐band gap properties caused by internal charge transfer from an electron‐rich unit to an electron‐deficient moiety. HOMO and LUMO levels are –5.53 and –3.86 eV for PCDTCHBI, and –5.49 and –3.84 eV for PCDTEHOCHBI, respectively. Optical band gaps of PCDTCHBI and PCDTEHOCHBI are 1.67 and 1.65 eV, respectively. The new carbazole based the 2H‐benzimidazole polymers show 0.11–0.13 eV lower values of band gaps as compared to that of carbazole based benzothiadiazole polymer, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT), while keeping nearly the same deep HOMO levels. The power conversion efficiencies of PCDTCHBI and PCDTEHOCHBI blended with [6,6]phenyl‐C71‐butyric acid methyl ester (PC71BM) are 1.03 and 1.15%, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (DPPD)‐based large band gap polymers, P(BDT‐TDPPDT) and P(BDTT‐TDPPDT), are prepared by copolymerizing electron‐rich 4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) unit with novel electron deficient 2,5‐dioctyl‐4,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (TDPPDT) unit. The absorption bands of polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) cover the region from 300 to 600 nm with an optical band gap of 2.11 eV and 2.04 eV, respectively. The electrochemical study illustrates that the highest occupied/lowest unoccupied molecular orbital energy levels of P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) are ?5.39 eV/?3.28 eV and ?5.44 eV/?3.40 eV, respectively. The single layer polymer solar cell (PSC) fabricated with a device structure of ITO/PEDOT:PSS/P(BDT‐TDPPDT) or P(BDTT‐TDPPDT):PC70BM+DIO/Al offers a maximum power conversion efficiency (PCE) of 6.74% and 6.57%, respectively. The high photovoltaic parameters such as fill factor (~72%), open circuit voltage (Voc, ~0.90 V), incident photon to collected electron efficiency (~76%), and PCE obtained for the PSCs made from polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) make them as promising large band gap polymeric candidates for PSC application. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3564–3574  相似文献   

5.
A series of new low band gap π‐conjugated polymers containing N‐alkyldithieno[3,2‐b:2′,3′‐d]pyrrole, benzo[c][1,2,5]thiadiazole, and alkylthiophenes are reported. The polymerization condition was standardized and the use of CuO to obtain high‐molecular‐weight polymer was also realized. The molecular weight of the polymers was found to be in the range of 45,000–53,000. All the polymers were found to be soluble in most of the common organic solvents, such as chloroform, dichloromethane, THF, and chlorobenzene with excellent film forming properties. The λmax of the polymers was found to be in the range of 687–663 nm with band gap in the range of 1.35–1.43 eV. The oxidation potential of the polymers from cyclic voltammetry was determined to be 0.5–0.75 V. The HOMO levels of the above synthesized polymers were found to be between 5.24 and 5.54 eV. All the polymers exhibited a PL emission in between 755 and 773 nm. The polymers were found to be thermally stable above 277 °C with only a 5% weight loss. From the thermal stability values, it is expected that the current set of polymers are stable enough for the application in electronic devices. To realize the potential use of the polymers, EL devices were fabricated and found to show red emission with comparatively low threshold voltage. A brightness of 54 cd m−2 for the device with polymer PC could be reached. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6514–6525, 2009  相似文献   

6.
It has been shown recently, that the presence of alkyl side chains at the 3‐positions on the thiophene rings placed next to 2,1,3‐benzothiadiazole core in the backbone of several conjugated polymers results in severe steric hindrance and prevents efficient planarity of the thiophene‐2,1,3‐benzothiadiazole‐thiophene (TBzT) segment. Both properties have a strong influence on the optoelectronic properties of the polymer and need to be considered when the polymer is to be used for organic electronics applications. In this work, we modified a previously synthesized oligothiophene copolymer, consisting of two 3,4′‐dialkyl‐2,2′‐bithiophene units attached to a 2,1,3‐benzothiadiazole unit (TBzT segment) and a thieno[3,2‐b]thiophene unit, by optimizing the lateral alkyl side chains following a density functional theory investigation. It is demonstrated that eliminating the alkyl side chains from the 3‐positions of the TBzT segment and anchoring them onto the thieno[3,2‐b]thiophene, using an efficient synthesis of the 3,6‐dihexylthieno[3,2‐b]thiophene unit, allows us to reduce the energy band gap. In addition, the chemical modification leads to a better charge transport and to an enhanced photovoltaic efficiency of polymer/fullerene blends. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Thienoisoindigo (TIG) moiety has been paid numerous attentions as an excellent acceptor building block in low‐band‐gap polymers. Herein, a new TIG‐dithiophene alternating copolymer (PTIG2T) was successfully synthesized from an asymmetric TIG‐based donor–acceptor (D‐A) monomer via the self‐condensation‐type direct arylation polymerization. PTIG2T exhibited the light absorption over 1000 nm owing to the intramolecular charge transfer in the thin film state, which corresponded to an optical band gap of 1.24 eV. The HOMO and LUMO levels of PTIG2T were determined to be −5.08 and −3.60 eV, respectively. Furthermore, the organic photovoltaic (OPV) with a PTIG2T/PC61BM active layer achieved a power conversion efficiency (PCE) of 3.19%, which is one of the highest PEC achieved by OPVs with TIG‐based materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 430–436  相似文献   

8.
Three novel alternating copolymers of thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) and triisopropylsilylacetylene‐functionalized anthracene were prepared via Suzuki polymerization. Various solubilizing substituents were attached to the TPD moiety in order to ascertain the impact they have upon the optical, electrochemical, and thermal properties of the resulting polymers. All copolymers showed good solubility and thermal stability with decomposition temperatures in excess of 300°C. Optical properties revealed that PTATPD(O), PTATPD(DMO), and PTATPD(BP) displayed optical energy gaps in excess of 2.0 eV. It is speculated that steric repulsion between solubilizing groups on repeat units along polymer chains reduces their planarity and decreases their electronic conjugation. The amorphous nature of the polymers was confirmed with differential scanning calorimetry and powder X‐ray diffraction. The highest occupied molecular orbital levels of the three polymers are unaffected by the different solubilizing chains. However, they exert some influence over the lowest unoccupied molecular orbital (LUMO) levels with PTATPD(BP) and PTATPD(O) displaying the lowest LUMO levels (?3.4 eV). In contrast, PTATPD(DMO) displayed the highest LUMO level (?3.3 eV). © 2015 The Authors. Polymers for Advanced Technologies Published by John Wiley & Sons Ltd.  相似文献   

9.
We synthesized through‐space conjugated polymers with [2.2]paracyclophane and thieno[3,4‐b]pyrazine units in the main chain by the Sonogashira–Hagihara coupling reaction. The obtained polymers were soluble in common organic solvents, and homogeneous thin films were readily obtained from the polymer solutions by spin‐coating techniques. The polymers exhibited the extension of the conjugation length via the through‐space interaction. The polymers showed orangish‐red emission with peak maxima of around 610 nm in diluted solutions and their thin films, which were derived from the thieno[3,4‐b]pyrazine moieties. The optical and electrochemical behaviors of the polymers containing pseudo‐para‐ and pseudo‐ortho‐linked [2.2]paracyclophane were identical. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

10.
An original strategy to construct a new donor–acceptor (D–A)‐integrated structure by directly imposing “pull” unit on the “push” moiety to form fused ring architecture has been developed, and poly{N‐alkyl‐carbazole[3,4‐c:5,6‐c]bis[1,2,5]thiadiazole‐alt‐thiophene} (PCBTT) with D–A‐integrated structure, in which two 1,2,5‐thiadiazole rings are fixed on carbazole in 3‐, 4‐ and 5‐, 6‐position symmetrically and thiophene is used as bridge, has been synthesized. The interaction between pull and push units has fine tuned the HOMO/LUMO energy levels, and the resulting copolymer covers the solar flux from 300 to 750 nm. The interaction between pull and push units is worth noting that due to the fused five rings inducing strong intermolecular interaction, an extremely short π–π stacking distance of 0.32 nm has been achieved for PCBTT both in powder and solid states. This is the shortest π–π stacking distance reported for conjugated polymers. Additionally, an obvious intramolecular charge transfer and energy transfer from donor units to acceptor units have been detected in this D–A integration. A moderate‐to‐high open‐circuit voltage of ~0.7 V in PCBTT:[6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) (w/w = 1/2) solar cells is achieved due to the low‐lying HOMO energy level of PCBTT. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
π‐Conjugated polymers, PBDT‐CNETT and PBDT‐CNECPDT , were prepared by the Stille cross‐coupling polymerization. Optical and thermal properties of the obtained polymers were investigated by UV–vis spectroscopy and thermogravimetric analysis. PBDT‐CNETT and PBDT‐CNECPDT exhibited very narrow band gaps of 1.39 and 1.13 eV, respectively. Highest occupied molecular orbital energy levels estimated by surface analyzer were ?5.17 and ?5.11 eV for PBDT‐CNETT and PBDT‐CNECPDT , respectively. The solar cells based on these polymers were evaluated with the cell configuration of ITO/PEDOT‐PSS/polymer:PC61BH/LiF/Al. The power conversion efficiencies of the solar cells were estimated to be 1.57 and 0.16% for PBDT‐CNETT and PBDT‐CNECPDT , respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A series of new low‐band gap copolymers based on dioctyloxybenzo[1,2‐b;3,4‐b′] dithiophene and bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline monomers have been synthesized via a Stille reaction. The effect of different functional groups attached to bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline was investigated and compared with their optical, electrochemical, hole mobility, and photovoltaic properties. Polymer solar cell (PSC) devices of the copolymers were fabricated with a configuration of ITO/ PEDOT: PSS/copolymers: PCBM (1:4 wt ratio)/Ca/Al. The best performance of the PSC device was obtained by using PbttpmobQ as the active layer. A power conversion efficiency of 1.42% with an open‐circuit voltage of 0.8 V, a short‐circuit current (JSC) of 5.73 mA cm−2, and a fill factor of 30.9% was achieved under the illumination of AM 1.5, 100 mW cm−2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A new synthetic procedure toward substituted dithiophthalides, 5,6‐dialkyloxydithiophthalide and 5,6‐dithioalkyldithiophthalide, is presented. 5,6‐Dithiooctyldithiophthalide was obtained from 4,5‐dichlorophthalic acid in an eight‐step reaction with an overall yield of 26%. 5,6‐Dioctyloxydithiophthalide was obtained from 4,5‐dihydroxyphthalic acid dimethyl ester in a seven‐step reaction (overall yield = 15%). Both monomers were polymerized by a thermal and nonoxidative polymerization that resulted in soluble poly(isothianaphthene) derivatives with a band gap of about 1.2 eV. Photoinduced absorption measurements revealed the existence of charged excitations upon illumination. The photoinduced charge generation, combined with the extensive light‐harvesting properties and the easy processability, makes these materials quite promising for photovoltaic applications. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1034–1045, 2003  相似文献   

15.
Alternating narrow band gap (NBG) conjugated polymers derived from 6,6′,12,12′‐tetraoctylindeno[1,2‐b]fluorene (IF) and 2,3‐dimethyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DTTP), 2,3‐diphenyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DPTP) or 2,3‐dioctyl‐5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DOTP), named as PIF‐DTTP, PIF‐DPTP, and PIF‐DOTP, respectively, were synthesized by Suzuki coupling reaction and characterized. The photochemical stabilities of the copolymers and copolymer derived from IF and 5,7‐dithien‐2‐yl‐thieno[3,4‐b]pyrazine (DTP) were investigated by the UV absorptions, PL spectra, FT‐IR spectra, and photovoltaic properties of the copolymers as a function of UV irradiation time. The studies revealed that the degradation of thieno[3,4‐b]pyrazine (TP) ring under UV irradiation can be retarded or eliminated by introducing phenyl group into the 2,3‐positions of TP ring, and indicated that 2,3‐diphenylthieno[3,4‐b]pyrazine could be used as durable electron deficient moiety to achieve donor–acceptor NBG‐conjugated polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Two new low‐bandgap alternating copolymers (CEHTF and CEHTP) consisting of 4,6‐bis(3′‐(2‐ethylhexyl)thien‐2′‐yl)thieno[3,4‐c][1,2,5] thiadiazole and 9,9‐bis(2‐ethylhexyl)fluorene or 2,5‐bis(isopentyloxy)benzene were synthesized by Suzuki coupling reaction of corresponding comonomers. Their optical, electrochemical, and photovoltaic (PV) properties were studied and are reported. Both the copolymers exhibited long‐wavelength absorption covering the whole visible spectral region, which is in CEHTP thin films extended up to near infrared region, ambipolar redox properties, and electrochromism. High‐electron affinities and low‐optical bandgap values, 1.37 and 1.15 eV, were determined for CEHTF and CEHTP, respectively. PV devices with bulk heterojunction made of blends of copolymers and fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester ([60]PCBM) were prepared and characterized. Effects of intramolecular charge transfer strength and side‐chain nature and length on photophysical properties are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A new series of low‐bandgap copolymers based on electron‐accepting thieno[3,4‐b]pyrazine (TPZ) and different electron‐donating aza‐heteroaromatic units, such as carbazole (CZ), dithieno[3,2‐b:2′,3′‐d]pyrrole (TPR) and dithieno[3,2‐b:2′,3′‐e]pyridine (TPY), have been synthesized by Suzuki or Stille coupling polymerization. The resulting copolymers were characterized by NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. UV–vis absorption and cyclic voltammetry measurements show that TPZ‐based copolymer with TPR has the best absorption due to the strongest intramolecular charge transfer effect and smallest bandgap. The basic electronic structure of D‐A model compounds of these copolymers were also studied by density functional theory (DFT) calculations. The conclusion of calculation agreed also well with the experimental results. The polymer solar cells (PSCs) based on these copolymers were fabricated with a typical structure of ITO/PEDOT:PSS/copolymer:PC71BM/Ca/Al under the illumination of AM 1.5G, 100 mW cm?2. The performance results showed that TPZ‐based copolymer with TPR donor segments showed highest efficiency of 1.55% due to enhanced short‐circuit current density. The present results indicate that good electronic, optical, and photovoltaic properties of TPZ‐based copolymers can be achieved by just fine‐tuning the structures of aza‐heteroaromatic donor segments for their application in PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Polymers consisting of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]thiophene units (PTB‐based polymers), either fully or partially containing 4‐fluorophenyl pendants, are synthesized as electron donor materials for inverted‐type polymer solar cells (PSCs). The influence of the 4‐fluorophenyl pendant content on the thermal and optical properties, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the hole mobilities, and photovoltaic performances are investigated. As the 4‐fluorophenyl pendant content increased, the HOMO and LUMO of the polymers were deepened proportionally and the open‐circuit voltages of the PSCs improved. Incorporation of 4‐fluorophenyl pendants into the polymers also affected the crystallinity, orientation, and compatibility with [6,6]‐phenyl‐C61‐butyric acid methyl ester in the active layers, leading to nonlinearities in the short‐circuit current densities, and fill factors. The incorporation of an appropriate number of 4‐fluorophenyl pendants enhanced the power conversion efficiencies of the PSC devices from 2.25 to 3.96% for identical device configurations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1586–1593  相似文献   

19.
New diketopyrrolopyrrole (DPP)‐containing conjugated polymers such as poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐1‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(1,6)PY)) and poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐2‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)‐catalyzed conditions. P(DTDPP‐alt‐(2,7)PY), incorporating 2,5‐bis(2‐octyldodecyl)‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione (DTDPP) at the 2,7‐position of a pyrene ring showed a lower band‐gap energy (E. = 1.65 eV) than the 1,6‐substituted analog, P(DTDPP‐alt‐(1,6)PY) (E = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6‐ to the 2,7‐position of the pyrene ring. An organic thin‐film transistor fabricated using the newly synthesized P(DTDPP‐alt‐(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V?1 s?1 (Ion/off ~ 106), which was much larger than that obtained using P(DTDPP‐alt‐(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP‐alt‐(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on IDS, photocontrolled memory could be realized under the variation of gate voltages. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
A comparative investigation was undertaken for the electrosynthesis and electrochemical properties of three different electroactive polymers having a conjugated core building block, dibenzo[a,c]phenazine. A series of monomers has been synthesized as regards to thiophene based units; thiophene, 3‐hexyl thiophene, and 3,4‐ethylenedioxythiophene. The effects of different donor substituents on the polymers' electrochemical properties were examined by cyclic voltammetry. Introducing highly electron‐donating (ethylene dioxy) group to the monomer enables solubility while also lowering the oxidation potential. The planarity of the monomer unit enhances π‐stacking and consequently lowering the Eg from 2.4 eV (PHTP) to 1.7 (PTBP). Cyclic voltammetry and spectroelectrochemical measurements revealed that 2,7‐bis(4‐hexylthiophen‐2‐yl)dibenzo[a,c]phenazine (HTP) and 2,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)dibenzo[a,c]phenazine (TBP) possessed electrochromic behavior. The colorimetry analysis revealed that while PTBP have a color change from red to blue, PHTP has yellow color at neutral state and blue color at oxidized state. Hence the presence of the phenazine derivative as the acceptor unit causes a red shift in the polymers' absorption to have a blue color. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1714–1720, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号