首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract

The degree of randomization, q, of structural units in melt blends of the polysulfide homopolymers A(PS1) and B(PS2), wherein the disulfide equivalents D A/D B = 1, were studied by electron ionization mass spectrometry. Over the temperature range of 207–219°C, the relaxation process, due to the dominant disulfide–disulfide interchange reactions, is postulated to follow an associative reaction mechanism. These intermolecular disulfide–disulfide interactions promote a transient enhancement of the sulfur rank in the activated complex resulting in formation of the randomized co‐polymer AB. The mass spectrometric experimental design enabled measurement of concentrations of reactants A(PS1) and B(PS2), as well as the randomized copolymer AB, by monitoring the abundance of dimer units a2, b2, and ab, respectively as a function of time. The degree of randomization, q, was observed in the absence of catalysts or solvents, notwithstanding the solvent/solute and solute/solvent characteristics of the polymer melt blend. The mechanism of this randomization process, was rationalized on the basis of the properties of sulfur, aided by the observation of macrocyclic monomeric and dimeric units during the retro‐polymerization reactions under the EI/MS conditions employed. The model polysulfide polymers A(PS1) and B(P52), used in this study were synthesized from bis(2‐chloroethyl)ether and bis(2‐chloro ethoxy)methane, respectively.  相似文献   

2.
A novel melt transurethane polycondensation route for polyurethanes under solvent‐free and nonisocyanate condition was developed for soluble and thermally stable aliphatic or aromatic polyurethanes. The new transurethane process was investigated for A + B, A‐A + B, and A‐A + B‐B (A‐urethane and B‐hydroxyl) ‐type condensation reactions, and also monomers bearing primary and secondary urethane or hydroxyl functionalities. The transurethane process was confirmed by 1H and 13C NMR, and molecular weight of the polymers were obtained as Mn = 10–15 × 103 and Mw = 15–45 × 103 g/mol. The mechanistic aspects of the melt transurethane process and role of the catalyst were investigated using model reactions, 1H NMR, and MALDI‐TOF‐MS. The model reactions indicated the occurrence of 97% reaction in the presence of catalyst, whereas its absence gave only less than 2% of the product. The polymer samples were subjected for end‐group analysis using MALDI‐TOF‐MS, which confirms the Ti‐catalyst mediated nonisocyanate pathway in the melt transurethane process. Almost all the polyurethanes were stable up to 280 °C, and the Tg of the polyurethanes can be easily fine‐tuned from ?30 to 120 °C by using appropriate diols in the melt transurethane process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2445–2458, 2008  相似文献   

3.
Acidic bismuth salts, such as BiCl3, BiBr3, BiJ3, and Bi‐triflate catalyzed the ring‐opening polymerization of 2‐methoxazoline (MOZ) in bulk at 100 °C, whereas less acidic salts such as Bi2O3 or Bi(III)acetate did not. Bi‐triflate‐catalyzed polymerizations of 2‐ethyloxazoline (EtOZ) were performed with variation of the monomer–catalyst ratio (M/C). It was found that the molecular weights were independent of the M/C ratio. The formation of cationic chain ends and the absence of cycles was proven by reactions of virgin polymerization products with N,N‐dimethyl‐4‐aminopyridine or triphenylphosphine. The resulting polymers having modified cationic chain ends were characterized by 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The polymerization mechanism including chain‐transfer reactions is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4777–4784, 2008  相似文献   

4.
Well‐defined in‐chain norbornene‐functionalized poly(ethylene oxide)‐b‐poly(?‐caprolactone) copolymers (NB‐PEO‐b‐PCL) were synthesized from a dual clickable containing both hydroxyl‐ and alkyne‐reactive groups, namely heterofunctional norbornene 3‐exo‐(2‐exo‐(hydroxymethyl)norborn‐5‐enyl)methyl hexynoate. A range of NB‐PEO‐b‐PCL copolymers were obtained using a combination of orthogonal organocatalyzed ring‐opening polymerization (ROP) and click copper‐catalyzed azide–alkyne cycloaddition (CuAAC). Ring‐opening metathesis polymerization (ROMP) of NB‐PEO‐b‐PCL macromonomers using ruthenium‐based Grubbs’ catalysts provides comb‐like and umbrella‐like graft copolymers bearing both PEO and PCL grafts on each monomer unit. Mikto‐arm star A2B2 copolymers were obtained through a new strategy based on thiol–norbornene photoinitiated click chemistry between 1,3‐propanedithiol and NB‐PEO‐b‐PCL. The results demonstrate that in‐chain NB‐PEO‐b‐PCL copolymers can be used as a platform to prepare mikto‐arm star, umbrella‐, and comb‐like graft copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 4051–4061  相似文献   

5.
A series of blue light‐emitting hyperbranched polymers comprising poly(fluorene‐co‐dibenzothiophene‐S,S‐dioxide) as the branch and benzene, triphenylamine, or triphenyltriazine as the core were synthesized by an “A2 + A2' + B3” approach of Suzuki polymerization, respectively. All resulted copolymers exhibited quite comparable thermal properties with the glass transition temperatures in the range of 59–68 °C and relatively high decomposition temperatures over 420 °C. Photoluminescent spectra exhibited slight variation with the molar ratio of the dibenzothiophene‐S,S‐dioxide unit and the size of the core units. Polymer light‐emitting devices demonstrated blue emission with excellent stability of electroluminescence. Copolymers based on smaller core units of benzene and triphenylamine exhibited enhanced device performances regarding to that of triphenyltriazine. With the device configuration of ITO/PEDOT:PSS/polymer/CsF/Al, a maximum luminous efficiency of 4.5 cd A?1 was obtained with Commission Internationale de L'.Eclairage (CIE) coordinates of (0.16, 0.19) for the copolymer PFSO15B. These results indicated that hyperbranched structure can be a promising strategy to attain spectrally stable blue‐light‐emitting polymers with high efficiency. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1043–1051  相似文献   

6.
The conductivity of a stoichiometric mixture of diglycidyl ether of 1,4‐butanediol and 1,6‐hexamethylene diamine has been studied during its polymerization at several temperatures where the ultimate product is a crosslinked gel. The decrease in the dc conductivity, σ0, with the polymerization time, t, fits an equation for bond percolation, σ0 ∼ [(tgelt)/tgel]p, and yields a gelation time, tgel which agrees with the tgel determined from the viscosity and shear modulus measurements. It is proposed that as one covalent bond forms on chemical reaction, an indeterminable number of intermolecular H‐bonds in the structure vanish, and protonic conduction is disrupted. Thus, as the original H‐bond network gives way to a covalently bonded network, the mechanical rigidity increases, and protonic conductivity decreases. The gel point is reached when the increase in the number of covalent bonds brings the liquid's state up to its rigidity percolation threshold, and the decrease in the number of H‐bonds brings it down to its electrical percolation threshold. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 122–126, 2000  相似文献   

7.
Novel hyperbranched poly(amido amine)s containing tertiary amines on the backbones and acryl or secondary amines as the surface groups were successfully synthesized via the Michael addition polymerizations of a triacrylamide [1,3,5‐triacryloylhexahydro‐1,3,5‐triazine (TT)] and a difunctional amine [n‐butylamine (BA)] NMR techniques were used to clarify the structures of hyperbranched polymers and polymerization mechanism. The reactivity of the secondary amine formed in situ was much lower than that of the primary amines in BA. When the feed molar ratio was 1:1 TT/BA, the secondary amine formed in situ was almost kept out of the reaction before the BA (AA′) and TT (B3) monomers were consumed, and this led to the formation of A′B2 intermediates containing one secondary amine group and two acryl groups. The self‐polymerization of the A′B2 intermediates produced hyperbranched polymers bearing acryl as surface groups. For the polymerization with the feed molar ratio of 1:2 TT/BA, A′2B intermediates containing one acryl group and two secondary amine groups were accumulated until self‐polymerization started; the self‐polymerization of the intermediates formed hyperbranched polymers with secondary amines as their surface groups. Modifications of surface functional groups were studied to form new hyperbranched polymers. The hyperbranched poly(amido amine)s were amorphous. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6226–6242, 2006  相似文献   

8.
Two porous porphyrin‐based covalent triazine frameworks (PCTFs), in which porphyrin is incorporated as building block, have been synthesized by the Friedel–Crafts reaction. The copolymer PCTFs show large Brunauer–Emmett–Teller specific surface area of up to 1089 m2 g?1, high CO2 uptake capacity reaching 139.9 mg g?1 at 273 K/1.0 bar, and good selectivity for CO2/CH4 adsorption attaining 6.1 at 273 K/1.0 bar. The resulting porous solids also can be used as matrices for drug delivery of ibuprofen in vitro. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2594–2600  相似文献   

9.
The double click reactions (Cu catalyzed Huisgen and Diels–Alder reactions) were used as a new strategy for the preparation of well‐defined heterograft copolymers in one‐pot technique. The synthetic strategy to the various stages of this work is outlined: (i) preparing random copolymers of styrene (St) and p‐chloromethylstyrene (CMS) (which is a functionalizable monomer) via nitroxide mediated radical polymerization (NMP); (ii) attachment of anthracene functionality to the preformed copolymer by the o‐etherification procedure and then conversion of the remaining ? CH2Cl into azide functionality; (iii) by using double click reactions in one‐pot technique, maleimide end‐functionalized poly(methyl methacrylate) (PMMA‐MI) via atom transfer radical polymerization (ATRP) of MMA and alkyne end‐functionalized poly (ethylene glycol) (PEG‐alkyne) were introduced onto the copolymer bearing pendant anthryl and azide moieties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6969–6977, 2008  相似文献   

10.
Medium‐ and high‐resolution SEM analysis of several Ti‐based MgCl2‐supported Ziegler–Natta catalysts and isotactic polypropylene produced with them is carried out. Each catalyst particle, 35–55 μ in size, produces one polymer particle with an average size of 1.5–2 mm, which replicates the shape of the catalyst particle. Polymer particles contain two distinct morphological features. The larger of them are globules with Dav ~400 nm; from 1 to 2 × 1011 globules per particle. Each globule represents the combined polymer output of a single active center. The globules consist of ~2500 microglobules with an average size of ~20 nm. The microglobules contain several folded polymer molecules; they are the smallest thermodynamically stable macromolecular ensembles in propylene polymerization reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3832–3841  相似文献   

11.
Hyperbranched aryl polycarbonates were prepared via the polymerizations of A2B and AB2 monomers, which involved the condensation of chloroformate (A) functionalities with tert‐butyldimethylsilyl‐protected phenols (B), facilitated by reactions with silver fluoride. The polymerization of the A2B monomer gave hyperbranched polycarbonates bearing fluoroformate chain ends, which were hydrolyzed to phenolic chain‐end moieties and further elaborated to tert‐butyldimethylsilyl ether groups. The polymerization of the AB2 monomer gave tert‐butyldimethylsilyl ether‐terminated hyperbranched polycarbonates. The polymerizations were conducted at 23–70 °C in 20% acetonitrile/tetrahydrofuran in the presence of a stoichiometric excess of silver fluoride for 20–40 h to afford hyperbranched polycarbonates with weight‐average molecular weights exceeding 100,000 Da and polydispersity indices of typically 2–3. The degrees of branching were determined by a reductive degradation procedure followed by high‐performance liquid chromatography. Alternatively, the degrees of branching were measurable by solution‐state 1H NMR analyses and agreed with the statistical 50% branching expected for the polymerization of A2B and AB2 monomers not experiencing constructive or destructive electronic effects on the reactivity of the multiple functional groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 823–835, 2002; DOI 10.1002/pola.10167  相似文献   

12.
The influence of crosslinking process on the resulting structural properties of phthalonitrile matrices is studied through theoretical and experimental investigations. Multiscale procedure for generating fully atomistic phthalonitrile networks with simulation of radical polymerization reactions and specific reactions of triazine formation at the mesoscale level is presented and applied to the case of phthalonitrile resin based on low‐melting monomer bis(3‐(3,4‐dicyanophenoxy)phenyl)phenyl phosphate. The structural properties of the generated networks of various conversions and with various amount of triazine are analyzed using the dissipative particle dynamics and atomistic molecular dynamics. Triazine‐containing networks are much sparser in comparison with triazine‐free ones in terms of simple cycle size. The values of density, coefficients of linear thermal expansion and glass transition temperatures (Tgs) agree with obtained experimental data, and are very similar for different crosslinking mechanisms. The dependence of Tg on conversion correlates well with the sol–gel transition in network structure. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 362–374  相似文献   

13.
The anionic polymerization behaviors of ethynylstyrene derivatives containing isomeric pyridine moieties, 2‐(2‐(4‐vinylphenyl)ethynyl)pyridine ( A ), 3‐(2‐(4‐vinylphenyl)ethynyl)pyridine ( B ), and 4‐(2‐(4‐vinylphenyl)ethynyl)pyridine ( C ), were investigated in the identical conditions. The anionic polymerization of A – C was performed with (diphenylmethyl)potassium (Ph2CHK) in tetrahydrofuran (THF) at ?78 °C. The polymerization of A proceeded quantitatively at –78 °C for 4 h, and the resulting poly( A ) possessed predictable molecular weights (Mn = 3300–68,500) and narrow molecular weight distributions (MWDs) (Mw/Mn = 1.04–1.11). In contrast, the anionic polymerization of B was not performed at –78 °C for 4 h due to the occurrence of side reactions. The monomer B was quantitatively recovered after the reaction. In the polymerization of C performed at –78 °C for 6 h, observed Mn values of the resulting poly( C ) were in good agreement with calculated molecular weights based on monomer to initiator ratios, but the MWDs were somewhat broad (Mw/Mn = 1.23–1.31). To estimate the reactivity of A and to characterize its living nature, the block copolymerization of A with 2‐vinylpyridine (2VP) and methyl methacrylate (MMA) was performed. The well‐defined block copolymers, poly(2VP)‐b‐poly( A ) and poly( A )‐b‐poly(MMA), were successfully synthesized without any additives. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Polytriarylamine copolymers can be prepared by Suzuki‐Miyaura cross‐coupling reactions of bis N‐methyliminodiacetic acid (MIDA) boronate ester substituted arylamines with dibromo arenes. The roles of solvent composition, temperature, reaction time, and co‐monomer structure were examined and (co)polymers prepared containing 9, 9‐dioctylfluorene (F8), 4‐sec‐butyl or 4‐octylphenyl diphenyl amine (TFB), and N, N′‐bis(4‐octylphenyl)‐N, N′‐diphenyl phenylenediamine (PTB) units, using a Pd(OAc)2/2‐dicyclohexylphosphino‐2′,6′‐dimethoxybiphenyl (SPhos) catalyst system. The performance of a di‐functionalized MIDA boronate ester monomer was compared with that of an equivalent pinacol boronate ester. Higher molar mass polymers were produced from reactions starting with a difunctionalized pinacol boronate ester monomer than the equivalent difunctionalized MIDA boronate ester monomer in biphase solvent mixtures (toluene/dioxane/water). Matrix‐assisted laser desorption/ionization mass spectroscopic analysis revealed that polymeric structures rich in residues associated with the starting MIDA monomer were present, suggesting that homo‐coupling of the boronate ester must be occurring to the detriment of cross‐coupling in the step‐growth polymerization. However, when comparable reactions of the two boronate monomers with a dibromo fluorene monomer were completed in a single phase solvent mixture (dioxane + water), high molar mass polymers with relatively narrow distribution ranges were obtained after only 4 h of reaction. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2798–2806  相似文献   

15.
A series of hyperbranched poly(arylene ether phosphine oxide)s (HB PAEPOs) were prepared via an A2 + B3 polymerization scheme with tris(4‐fluorophenyl)phosphine oxide as B3, and a variety of bisphenols as A2. The effects of the reactivity of the A2 monomer, the A:B ratio, the addition mode, the solvent, and the concentration on the final molecular weight, polydispersity index (PDI), and degree of branching (DB) were studied. Soluble HB PAEPOs with weight‐average molecular weights of up to 299,000 Da were achieved. Reactions in which the A2 component was added slowly resulted in lower DBs (0.2–0.5), whereas the slow addition of the B3 component provided samples with DBs of approximately 0.75. Reactions performed under high‐dilution conditions afforded completely soluble materials with weight‐average molecular weights of 9000–12,100 Da and PDI values as low as 2.20. The molecular weights achieved under high‐dilution conditions were independent of the mode of monomer addition. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3871–3881, 2003  相似文献   

16.
Hydrosilylation of olefin groups at poly(ethylene glycol) chain ends catalyzed by Karstedt catalyst often results in undesired side reactions such as olefin isomerization, hydrogenation, and dehydrosilylation. Since unwanted polymers obtained by side reactions deteriorate the quality of end‐functional polymers, maximizing the hydrosilylation efficiency at polymer chain ends becomes crucial. After careful investigation of the factors that govern side reactions under various conditions, it was related that the short lifetime of the unstable Pt catalyst intermediate led to the formation of more side products under the inherently dilute conditions for polymers. Based on these results, two new chelating hydrosilylation reagents, tris(2‐methoxyethoxy)silane (5) and 2,10‐dimethyl‐3,6,9‐trioxa‐2,10‐disilaundecane (6), have been developed. It was demonstrated that the hydrosilylation efficiency at polymer chain ends was significantly increased by employing the internally coordinating hydrosilane 5. In addition, employment of the internally coordinating disilane species 6 in an addition polymerization with 1,5‐hexadiene by hydrosilylation reaction yielded a polymer with high molecular weight (Mn = 9300 g/mol), which was significantly higher than that (Mn = 2600 g/mol) of the corresponding polymer obtained with non‐chelating dihydrosilane, 1,1,3,3‐tetramethyldisiloxane. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 527–536  相似文献   

17.
A tricomponent system, constituting monomer (methyl methacrylate, MMA), higher oxidation state transition‐metal catalyst (FeBr3) and a ligand (triphenylphosphine, PPh3), MMA/FeBr3/PPh3 system without external initiator (alkyl halide) has been studied extensively with different spectroscopic analyses. To figure out the mechanism, a series of explicit model reactions were conducted with a molar ratio of [MMA]0/[FeBr3]0/[PPh3]0 = 200/1/n (n = 0.1–3.0) at 80 °C, and the corresponding polymerization behaviors were investigated. Combined with theoretical deduction and spectroscopic evidences, the composition of the in‐situ generated initiators was gradually confirmed, which were redox products of FeBr3 and PPh3. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3842–3850  相似文献   

18.
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new ‐shaped amphiphilic block copolymer, (PMMA)2–PEO–(PS)2–PEO–(PMMA)2 [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso‐2,3‐dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)2–PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm‐4 amphiphilic block copolymer, (HO–PEO)2–PS2, was esterified with 2,2‐dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the ‐shaped amphiphilic block copolymer. The polymers were characterized with gel permeation chromatography and 1H NMR spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 147–156, 2007  相似文献   

19.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   

20.
The matrix formula developed in the context of heterochain theory, M?w = M?wp + WF ( I ? M )?1 S , was applied to describe the molecular weight development during free‐radical multicomponent polymerization. All of the required probabilistic parameters are expressed in terms of the kinetic‐rate constants and the various concentrations associated with them. In free‐radical polymerization, the number of heterochain types, N, needs to be extrapolated to infinity, and such extrapolation is conducted with only three different N values. This matrix formula can be used as a benchmark test if other approximate approaches can give reasonable estimates of the weight‐average molecular weights. The moment equations with the average pseudo‐kinetic‐rate constants for branching and crosslinking reactions may provide poor estimates when the copolymer composition drift during polymerization is very significant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2801–2812, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号