首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The swelling equilibria model of copolymer gel particles is proposed. It accounts for physical crosslinking as a result of hydrogen bonding. The modified Flory–Erman model is used to describe the elastic contribution to swelling. The model considers hydrogen bonding as a physical crosslinker. A free‐energy‐of‐mixing term is represented using the extended Flory–Huggins theory. The interaction parameter χ in the model is a function of both composition and temperature. We then compare the proposed model with the swelling behaviors of copolymer gel particles. Our model offers fairly good agreement with the experimental data for given systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1928–1934, 2001  相似文献   

2.
Hydrogels with various ionic group contents were prepared from acrylamide and crotonic acid (CrA) monomers with 0–12.9 mol % CrA in aqueous solutions by radiation‐induced polymerization and gelation with γ rays from a 60Co source. The volume swelling ratio of the poly(acrylamide/crotonic acid) hydrogels was investigated as a function of the pH and ionic strength of the swelling medium and the type of counterion in the swelling medium. The volume swelling ratio increased with an increase in pH and a decrease in the ionic strength. The volume swelling ratio of these hydrogels was evaluated with an equation, based on the Flory–Huggins thermodynamic theory, the James–Guth phantom network theory, and the Donnan theory of swelling of weakly charged ionic gels, that was modified here for the determination of the molecular weight between crosslinks (Mc) and the polymer–solvent interaction parameter (χ). The modified equation described very well the swelling behavior of the charged polymeric network. The same equation also provided the simultaneous measurement of these parameters for the systems investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1656–1664, 2003  相似文献   

3.
We investigated the effect of charge densities of the gel network and ionic strength of solution on swelling behaviors of ionized gels. We used the modified double‐lattice model, Flory–Erman's elastic model, and the ideal Donnan theory to describe swelling behaviors of the electrolyte bounded hydrogels. Energy parameters (?/k, δ?/k) were obtained from fitting liquid–liquid equilibria data of the linear poly‐N‐isopropylacrylamide/water system and two adjustable model parameters obtained from a nonelectrolyte hydrogel system. Calculated values agreed with experimental data for the given systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2333–2338, 2002  相似文献   

4.
The solubility parameters of pure poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate/itaconic acid) [P(HEMA/IA)] hydrogels were determined by 20 solvents with various solubility parameters in swelling experiments. The solubility parameter of pure PHEMA was 26.93 ± 0.46 (MPa)1/2. The effect of mole percentages of itaconic acid (IA) in P(HEMA/IA) hydrogels on the solubility parameter was investigated. The measured values were compared to literature and solubility values theoretically determined by group contribution values of van Krevelen and Hoy. The incorporation of IA into the hydrogel system slightly increased the solubility parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1995–2003, 2002  相似文献   

5.

The swelling behavior of acrylamide (AAm)–based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. [(Methacrylamido)propyl]trimethyl‐ammonium chloride (MAPTAC) and acrylic acid (AAc) were used as the ionic comonomer in the hydrogel preparation. Three sets of hydrogels containing 70 mol% AAm and 30 mol% ionic comonomers of varying mole ratios were prepared. The variations of the hydrogel volume in response to changes in pH, and salt concentration were measured. As pH increases from 1, the hydrogel volume V eq in water first increases and reaches a maximum value at a certain pH. Then, it decreases again with a further increase in pH and attains a minimum value around the isoelectric point (IEP). After passing the collapsed plateau region, the gel reswells again up to pH=7.1. The reswelling of the collapsed gels containing 10 and 4% MAPTAC occurs as a first‐order phase transition at pH=5.85 and 4.35, respectively, while the hydrogel with 1% MAPTAC reswells continuously beyond its IEP. Depending on pH of the solution, the hydrogels immersed in salt solutions exhibit typical polyelectrolyte or antipolyelectrolye behavior. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. It was shown that the equilibrium swelling theory qualitatively predicts the experimental behavior of polyampholyte hydrogels.  相似文献   

6.
Hydrogels have been widely used in microelectromechanical systems (MEMS) and Bio‐MEMS devices. In this article, the equilibrium swelling/deswelling of the pH‐stimulus cylindrical hydrogel in the microchannel is studied and simulated by the meshless method. The multi‐field coupling model, called multi‐effect‐coupling pH‐stimulus (MECpH) model, is presented and used to describe the chemical field, electric field, and the mechanical field involved in the problem. The partial differential equations (PDEs) describing these three fields are either nonlinear or coupled together. This multi‐field coupling and high nonlinear characteristics produce difficulties for the conventional numerical methods (e.g., the finite element method or the finite difference method), so an alternative—meshless method is developed to discretize the PDEs, and the efficient iteration technique is adopted to solve the nonlinear problem. The computational results for the swelling/deswelling diameter of the hydrogel under the different pH values are firstly compared with experimental results, and they have a good agreement. The influences of other parameters on the mechanical properties of the hydrogel are also investigated in detail. It is shown that the multi‐field coupling model and the developed meshless method are efficient, stable, and accurate for simulation of the properties of the stimuli‐sensitive hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 326–337, 2006  相似文献   

7.
The swelling behavior of acid form poly(styrene sulfonate) (PSS‐H) thin films were investigated using in situ spectroscopic ellipsometry (SE) to probe the polymer–solvent interactions of ion‐containing polymers under interfacial confinement. The interaction parameter (χ), related to the polymer and solvent solubility parameters in the Flory–Huggins theory, describes the polymer‐solvent compatibility. In situ SE was used to measure the degree of polymer swelling in various solvent vapor environments, to determine χ for the solvent‐PSS‐H system. The calculated solubility parameter of 40–44 MPa1/2 for PSS‐H was determined through measured χ values in water, methanol, and formamide environments at a solvent vapor activity of 0.95. Flory–Huggins theory was applied to describe the thickness‐dependent swelling of PSS‐H and to quantify the water‐PSS‐H interactions. Confinement had a significant influence on polymer swelling at low water vapor activities expressed as an increased χ between the water and polymer with decreasing film thickness. As the volume fraction of water approached ~0.3, the measured χ value was ~0.65, indicating the water interacted with the polymer in a similar manner, regardless of thicknesses. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1365–1372  相似文献   

8.
A new molecular thermodynamic model for describing the swelling behavior of thermo-sensitive hydrogels was developed. The model consists of two terms. One is the contribution of the mixing of hydrogel network and water, which is dependent on the local polymer concentration and the interaction between polymer segment and solvent. A closed packed lattice model for polymer solution developed by Yang et al. was adopted for this term. The other is the elastic contribution derived from the network elasticity, which is dependent on the cross-linking degree of gel network. The elastic Gibbs energy model based on the Gaussian chain model developed by Flory was adopted. The model equation has two parameters. One is an energy parameter ? reflecting the interaction between water and gel network, the other is a size parameter V* that represents the cross-linking degree of the hydrogel. When the energy parameter ? is expressed as a quadratic of inverse temperature, this model can describe the swelling equilibrium behavior of neutral thermo-sensitive hydrogels quite well. The influences of model parameters were discussed in details. The experimental swelling curves of two kinds of polyacrylamide-based gels were correlated and good agreement was obtained.  相似文献   

9.
Water soluble monomer like sodium p‐styrene sulfonate (SSS) is copolymerized with hydrophobic and reactive monomer glycidyl methacrylate (GMA). The polymerization proceeds as dispersion and forms gels. The gel forming nature prevails even with other hydrophobic and hydrophilic monomers to form ternary polymeric systems. The swelling is dependent on polymer composition as well as the treatment history of polymers. SSS also induces ring opening of GMA to form 1,2‐diols as confirmed independently by various model reactions. The ability of hydrogels to absorb various dyes indicates that owing to the anionic nature, hydrogels absorb cationic dyes nearly quantitatively. Because of their strong affinity to cationic species these hydrogel forming polymers are potentially useful in water purification applications as well as purification of proteins. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 626–634  相似文献   

10.
Hydrogels undergo reversible and discontinuous volume changes in response to variation of solution conditions such as solvent composition, temperature, salt concentration, and pH. In this contribution we focus our attention on the experimental and theoretical investigation of these swelling equilibria of aqueous cross-linked poly (N-isopropylacrylamide) solutions as well as on the connected demixing behavior of the linear polymer dissolved in water. For the experimental study of the (liquid + liquid) equilibrium an alternative method based on refractive index measurements is suggested. In order to calculate the swelling behavior a model combining an expression for the Gibbs free energy of mixing with an expression for the elastic network is applied. As a model for the Gibbs free energy of mixing the UNIQUAC-approach and the Koningsveld–Kleintjens model are used. For the elastic network contribution again two different theories, namely the phantom network theory and the affine network theory, were applied. Whereas the type of network theory has only a small influence on the calculation results, the Gibbs free energy of mixing has a large impact. Using the UNIQUAC-approach the swelling equilibria can be correlated close to the experimental data, however, this model predicts a homogeneous mixture for linear polymer chains in water. In contrast to this situation the Koningsveld–Kleintjens model does a good job in calculating the swelling equilibria as well as the demixing curve, however, the adjustable parameter must be changed slightly.  相似文献   

11.
Thermoresponsive pNIPA (poly (N‐isopropylacrylamide)) gels modified with dopamine methacrylamide were synthesized using free‐radical polymerization. In this way, the catechol groups were introduced into the polymer network. The presence of dopamine in the gel led to a significant shift in the volume phase transition temperature (VPTT). It was found that hydrogels were electroactive and that oxidation of catechol groups also led to a strong shift in the VPTT. The temperature window, that is, the range of temperature where volume of the gel could be substantially changed by oxidation of the catechol groups, for the gel formed from the polymerization solution containing 5% of the dopamine derivative, was 30–40 °C. Additionally, the influence of Fe3+ ions, which form the most stable complexes with dopamine, on swelling behavior of the gels was investigated at various pH. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3236–3242  相似文献   

12.
The thickness‐dependent water vapor swelling of molecular layer‐by‐layer polyamide films is studied via specular X‐ray reflectivity. The maximum swelling ratio of these ultrathin films scale inversely with thickness but more importantly show a dual‐mode sorption behavior characterized by Langmuir‐like sorption at low relative humidity and network swelling at high relative humidity. The thickness‐dependent network parameters are extracted using a proposed model that builds on Painter‐Shenoy network swelling model while taking into account the glass‐like characteristic below a critical swelling ratio, which also scales inversely with thickness. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 412–417  相似文献   

13.
We present novel redox‐responsive hydrogels based on poly(N‐isopropylacrylamide) or poly(acrylamide), consisting of a reversible disulfide crosslinking agent N,N′‐bis(acryloyl)cystamine and a permanent crosslinking agent N,N′‐methylenebisacrylamide for microfluidic applications. The mechanism of swelling/deswelling behavior starts with the cleavage and reformation of disulfide bonds, leading to a change of crosslinking density and crosslinking points. Raman and ultraviolet‐visible spectroscopy confirm that conversion efficiency of thiol–disulfide interchange up to 99%. Rheological analysis reveals that the E modulus of hydrogel is dependent on the crosslinking density and can be repeatedly manipulated between high‐ and low‐stiffness states over at least 5 cycles without significant decrease. Kinetic studies showed that the mechanical strength of the gels changes as the redox reaction proceeds. This process is much faster than the autonomous diffusion in the hydrogel. Moreover, cooperative diffusion coefficient (Dcoop) indicates that the swelling process of the hydrogel is affected by the reduction reaction. Finally, this reversibly switchable redox behavior of bulky hydrogel could be proven in microstructured hydrogel dots through short‐term photopatterning process. These hydrogel dots on glass substrates also showed the desired short response time on cyclic swelling and shrinking processes known from downsized hydrogel shapes. Such stimuli‐responsive hydrogels with redox‐sensitive crosslinkers open a new pathway in exchanging analytes for sensing and separating in microfluidics applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2590–2601  相似文献   

14.
Polyacrylonitrile (PAN) grafted chitosan was prepared by ceric‐initiated graft polymerization of acrylonitrile onto chitosan in a homogenous medium. The copolymer chitosan‐g‐PAN product was then hydrolyzed to yield a novel smart hydrogel (H‐chitoPAN) with superabsorbing properties. The influence of add‐on values as well as temperature and time of hydrolysis of the initial chitosan‐g‐PAN on swelling behavior of the hydrogel was evaluated in water and various salt solutions. The swelling kinetics of the superabsorbing hydrogel was studied as well. The hydrogels exhibited ampholytic and pH‐sensitivity characteristics. Several sharp swelling changes were observed in lieu of pH variations in a wide range (pH 2–13). The swelling variations were explained according to swelling theory based on the hydrogel chemical structure. Superabsorbency, pH‐ and salt‐sensitivity of the chitosan‐based hydrogel was briefly compared with the classical starch‐based superabsorbent, H‐SPAN. The pH‐reversibility and on–off switching behavior of the intelligent H‐chitoPAN hydrogels makes them good candidates for considering as potential drug carries. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

16.
The polysaccharide, kappa‐carrageenan (κC) was chemically modified to achieve a novel superabsorbent hydrogel via graft copolymerization of methacrylamide (MAM) onto the substrate followed by alkaline hydrolysis. Ammonium persulfate (APS) and N,N′‐methylene bisacrylamide (MBA) were used as a free‐radical initiator and a crosslinker, respectively. The saponification reaction was carried out using sodium hydroxide aqueous solution. Either κC‐g‐PMAM or hydrolyzed κC‐g‐PMAM (PMAM: polymethacrylamide) was characterized by FT‐IR spectroscopy. The effect of grafting variables (i.e. concentration of MBA, MAM, and APS) and alkaline hydrolysis conditions (i.e. NaOH concentration, hydrolysis time and temperature) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The swelling capacity of these hydrogels was also measured in various salt solutions. Results indicated that the swelling ratios decreased with an increase in the ionic strength of the salt solutions. This behavior can be attributed to charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. Absorbency of superabsorbing hydrogels was examined in buffer solutions with pH range 1–13. Also, the pH reversibility and on–off switching behavior, at pH values 3.0 and 8.0, makes the synthesized hydrogels good candidates for controlled delivery of bioactive agents. Finally, swelling kinetics in distilled water and various salt solutions was preliminary investigated. Results showed that the swelling in water was faster than in saline solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Phase behaviors of polydisperse polystyrene (PS)/nematic liquid‐crystal systems [P‐ethoxy ‐ benzylidene ‐ pn‐butylaniline (EBBA)] are investigated with a thermo‐optical analysis technique. We also develop a thermodynamic framework to describe the phase behaviors of polydisperse PS/EBBA systems. The proposed model is based on a modified double‐lattice model to describe isotropic mixing and Maier–Saupe theory for anisotropic ordering. To correlate the polymer chain length and energy parameters in a nematic–isotropic biphasic region and to apply the primary interaction parameter in an isotropic–isotropic phase‐transition behaviors of polydisperse PS/EBBA systems. The proposed model shows remarkable agreement with experimental data for the model systems in comparison with an existing model. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1031–1039, 2006  相似文献   

18.
In this study, sodium humate/poly(acrylamide‐co‐methacrylic acid)/kaolin semi‐interpenetrating polymer network hybrid hydrogel was synthesized as an effective adsorbent for the removal of methylene blue. The morphological and structural properties, and swelling behavior in distilled water and various environments of hybrid hydrogel were investigated with different analyses and tests. The equilibrium swelling percent of hybrid hydrogel reached to 37,000% in 240 min. The parameters (agitation time, concentration, dose, temperature, and pH) affecting adsorption process for methylene blue were optimized using Taguchi method. The data obtained in optimum conditions were well fitted to Langmuir adsorption isotherm and maximum adsorption capacity was determined as 833. 33 mg/g. In the light of the results, the utilization of hybrid hydrogel with high swelling capacity is foreseen as a favored adsorbent in several separation processes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1070–1078  相似文献   

19.
To synthesize the novel molecular‐ and pH‐stimulus‐responsive hydrogel, we prepared poly(ethylene glycol)‐based hydrogel containing ionic groups. We evaluated the fundamental swelling/shrinking properties of the hydrogels synthesized by various conditions. Decreasing the molecular weight of a crosslinker provided the increasing of the equilibrium swelling ratio. Also, the equilibrium swelling ratio was changed by the introduction of functional ionic monomers and its compositions. Furthermore, the swelling/shrinking behaviors of the hydrogels were affected by the environmental condition of aqueous solution, in fact the hydrogels were considerably shrunk (to one‐fifth volume) using a di‐ionic solute in the aqueous solution through the ionic interactions between the hydrogel and the solutes. Additionally, the specific shrinking to diamine compounds was also observed in response to pH change. These results clearly show the swelling/shrinking responsibility of the hydrogels toward the molecular recognitions and its pH conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3153–3158  相似文献   

20.
Solubility data for poly(3‐hexylthiophene) (P3HT) in 29 pure solvents are presented and discussed in detail. Functional solubility parameter (FSP) and convex solubility parameter (CSP) computations are performed and the CSP and FSP results are compared to previously reported Hansen solubility parameters (HSPs) and to the parameters calculated using additive functional group contribution methods. The empirical data reveals experimental solubility parameters with substantial polar (δP) and hydrogen‐bonding (δH) components, which are not intrinsic to the structure of the P3HT polymer. Despite these apparent irregularities, it is shown that the predictor method based on the solubility function, f, does provide a reliable way to quantitatively evaluate the solubility of P3HT in other solvents in terms of a given set of empirical solubility data. The solubility behavior is further investigated using linear solvation energy relationship (LSER) modeling and COSMO‐RS computations of the activity coefficients of P3HT. The LSER model reveals that (1) the cavity term, δT, is the dominant factor governing the solubility behavior of P3HT and (2) the solvent characteristics that dictate the structural order (crystallinity) of P3HT aggregates do not similarly influence the overall solubility behavior of the polymer. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1075–1087  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号