首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
Poly(arylene ether ketone)s (PAEKs) are the most commonly known high‐performance materials used for ion exchange and fuel cell membranes. Described here is the design of novel sulfonated PAEKs (SPAEKs) and nonsulfonated PAEKs containing crown ether units in the main chain, which can be used in sensing applications and ion‐selective membranes. To this end, 4,4′(5′)‐di(hydroxybenzo)‐18‐crown‐6 was synthesized and used as monomer in a step growth polymerization to form crown ether‐containing PAEKs and SPAEKs. The successful synthesis of PAEKs containing 18‐crown‐6 and sulfonate groups was confirmed by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Membranes are fabricated from the sulfonated polymers. Potassium ion transport properties of the SPAEK and crown ether‐containing SPAEK membranes are assessed by diffusion dialysis. Potassium ion diffusion in the crown ether‐containing SPAEK membranes is almost four times lower than K+ diffusion in the native polymer membranes, without crown ether. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2786–2793  相似文献   

2.
A bisphenol monomer (2,5‐dimethoxy)phenylhydroquinone was prepared and further polymerized to obtain poly(arylene ether ketone) copolymers containing methoxy groups. After demethylation and sulfobutylation, a series of novel poly(arylene ether ketone)s bearing pendant sulfonic acid group (SPAEKs) with different sulfonation content were obtained. The chemical structures of all the copolymers were analyzed by 1H NMR and 13C NMR spectra. Flexible and tough membranes with reasonably good mechanical properties were prepared. The resulting side‐chain‐type SPAEK membranes showed good dimensional stability, and their water uptake and swelling ratio were lower than those of conventional main‐chain‐type SPAEK membranes with similar ion exchange capacity. Proton conductivities of these side‐chain‐type sulfonated copolymers were higher than 0.01 S/cm and increased gradually with increasing temperature. Their methanol permeability values were in the range of 1.97 × 10?7–5.81 × 10?7 cm2/s, which were much lower than that of Nafion 117. A combination of suitable proton conductivities, low water uptake, low swelling ratio, and high methanol resistance for these side‐chain‐type SPAEK films indicated that they may be good candidate material for proton exchange membrane in fuel cell applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
A series of wholly aromatic sulfonated poly(ether amide)s (SPEAs) containing a sulfonic acid group on the dicarbonyl aromatic ring were prepared via a polycondensation reaction of sulfonated terephthalic acid (STA), terephthalic acid (TA), and aromatic diamine monomers. The degree of sulfonation was readily controlled by adjusting the monomer feed ratio of STA and TA in the polymerization process, and randomly sulfonated polymers with an ion exchange capacity (IEC) of 1.0–1.8 mequiv/g were prepared using this protocol. The chemical structures of randomly sulfonated polymers were characterized using NMR and FT‐IR spectroscopies. Gel permeation chromatography analysis of SPEAs indicated the formation of high‐molecular‐weight sulfonated polymer. Tough and flexible SPEA membranes were obtained from solution of N,N‐dimethylacetamide, and thermogravimetric analysis of these membranes showed a high degree of thermal stability. Compared with previously reported sulfonated aromatic polyamides, these new SPEAs showed a significantly lower water uptake of 10–30%. In proton conductivity measurements, ODA‐SPEA‐70 (IEC = 1.80 mequiv/g), which was obtained from polycondensation of 4,4′‐oxydianiline and 70 mol % STA, showed a comparable proton conductivity (105 mS/cm) to that of Nafion 117 at 80 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 485–496, 2009  相似文献   

4.
In operation of polymer electrolyte membrane fuel cell or direct methanol fuel cell, ·OH radicals are the major cause for the degradation of polymer electrolyte membrane. In order to enhance its antioxidation stability, cerium ion (Ce3+, CE), an ·OH radical quencher, is introduced to membrane, as it converts the ·OH radicals into inactive chemicals. In this study, aminoethyl‐15‐crown‐5 (CRE) is grafted on the sulfonated poly(arylene ether ketone) (SPAEK) to prevent the migration of CE ions from the membrane for long‐term antioxidation stability, as CRE forms a coordination complex with CE. The chemical and physical structures of the CRE grafted SPAEK are examined using proton nuclear magnetic resonance, energy dispersive X‐ray, and small‐angle X‐ray scattering spectroscopy. The physical properties of the CRE grafted SPAEK membrane are investigated and compared with those of the CRE blended and CE blended ones. While the grafting of CRE does not significantly affect the thermal and mechanical and water uptake behaviors of membranes, it leads to a significant improvement of antidegradation effect compared with other blend systems according to Fenton's test. The proton conductivity decreases with addition of CE but its effect is lessened by introduction of CRE. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 101–109  相似文献   

5.
A new bisphenol monomer containing a pair of electron‐rich tetra‐arylmethane units was designed and synthesized. Based on this monomer, along with commercial 4,4′‐(hexafluoroisopropylidene)diphenol A and 4,4′‐difluorobenzophenone, a series of novel poly(arylene ether ketone)s containing octasulfonated segments of varying molar percentage (x) (6F‐SPAEK‐x) were successfully synthesized by polycondensation reactions, followed by sulfonation. Tough, flexible, and transparent membranes, exhibiting excellent thermal stabilities and mechanical properties were obtained by casting. 6F‐SPAEK‐x samples exhibited appropriate water uptake and swelling ratios at moderate ion exchange capacities (IECs) and excellent proton conductivities. The highest proton conductivity (215 mS cm−1) is observed for hydrated 6F‐SPAEK‐15 (IEC = 1.68 meq g−1) at 100 °C, which is more than 1.5 times that of Nafion 117. Furthermore, the 6F‐SPAEK‐10 membrane exhibited comparable proton conductivity (102 mS cm−1) to that of Nafion 117 at 80 °C, with a relatively low IEC value (1.26 meq g−1). Even under 30% relative humidity, the 6F‐SPAEK‐20 membrane (2.06 meq g−1) showed adequate conductivity (2.1 mS cm−1) compared with Nafion 117 (3.4 mS cm−1). The excellent comprehensive properties of these membranes are attributed to well‐defined nanophase‐separated structures promoted by strong polarity differences between highly ionized and fluorinated hydrophobic segments. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 25–37  相似文献   

6.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

7.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   

8.
A series of soluble, benzimidazole‐based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm?1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK‐only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm?1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640–3650, 2010  相似文献   

9.
Proton transport is one of crucial phenomena in electrolytic part highly considered to overcome a limit in fuel cell efficiency improvement. Proton conducting organic electrolyte was modeled and simulated at atomistic level of calculation by doping of butyl urocanate (C4U), a composite material with imidazole substructure, with sulfonated poly(ether ether ketone) (SPEEK) amorphous membrane at various working temperature. Molecular dynamics simulations were used to investigate structural and dynamics characteristic of C4U in the membrane comparing with the SPEEK-hydronium membrane model as a control. From simulations, thermal effect on water and proton carriers cluster surrounding the sulfonate groups was explored. At higher temperature, the more transport dynamics of C4U ions in SPEEK membranes were found than that of hydronium ions in the control system. Likewise, phase separation of hydrophobic and hydrophilic parts was taken into consideration here. A critical role of the enhancing proton conductivity by increasing the diffusion coefficient at temperature beyond C4U melting point in composite polymer membrane was emphasized. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1625–1635  相似文献   

10.
将纳米钛酸钡(BT)在环己烷中超声分散制得均匀的悬浊液后,与磺化聚醚酮的二甲亚砜溶液均匀混合,然后采用流延法制备了掺杂质子交换膜。 通过环镜扫描电子显微镜表征发现BT在膜中分散均匀,通过吸水率、溶剂吸收率、尺寸变化、电导率、甲醇透过率、力学性能及稳定性等测试发现掺杂膜虽然电导率有所下降,但是其抗溶胀性、稳定性和力学性能显著提高。  相似文献   

11.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   

12.
A series of proton exchange membranes based on sulfonated polyarylene ether ketones(SPAEKs) was used to study the effect of sulfonation degree on proton conductivity, methanol permeation and performance of direct methanol fuel cells(DMFCs). Dependences of physical characteristics of the membranes, i. e., proton conductivity, water uptake, swelling ratio, methanol permeability and ion exchange capacity(IEC) were systematically studied. Both methanol permeability and proton conductivity of the SPAEK membrane grow rapidly as the increase in sulfonation degree since methanol molecules and protons share the same transfer channel. However,the methanol permeability plays more important role comparing to proton conductivity. As a result, the SPAEK membrane with a medium sulfonation degree(60%) was found to yield the best performance in a DMFC due to the acquirement of balanced conductivity and methanol permeability.  相似文献   

13.
One of the integral parts of the fuel cell is the proton exchange membrane. Our research group has been engaged in the past few years in the synthesis of several sulfonated poly(arylene ether) random copolymers. The copolymers were varied in both the bisphenol structure as well as in the functional groups in the backbone such as sulfone and ketones. To compare the effect of sequence length, multiblock copolymers based on poly(arylene ether sulfone)s were synthesized. This paper aims to describe our investigation of the effect of chemical composition, morphology, and ion exchange capacity (IEC) on the transport properties of proton conducting membranes. The key properties examined were proton conductivity, methanol permeability, and water self diffusion coefficient in the membranes. It was observed that under fully hydrated conditions, proton conductivity for both random and block copolymers was a function of IEC and water uptake. However, under partially hydrated conditions, the block copolymers showed improved proton conductivity over the random copolymers. The proton conductivity for the block copolymer series was found to increase with increasing block lengths under partially hydrated conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2226–2239, 2006  相似文献   

14.
A series of block sulfonated poly(arylene ether ketone) (SPAEK) copolymers with different block lengths and ionic contents were synthesized by a two‐stage process. The morphology of these block SPAEK copolymers was investigated by various methods, such as differential scanning calorimetry (DSC), transmission electron microscope (TEM), and small angle X‐ray scattering (SAXS). Dark colored ionic domains of hundreds of nanometers spreading as a cloud‐like belt were observed in TEM images. The sizes of the ionic domains as a function of block copolymer composition were determined from SAXS curves. The results for the evolution of ionic domains revealed that the block copolymers exhibited more clearly phase‐separated microstructure with increasing ionic contents and hydrophobic sequence lengths. Proton conductivity is closely related to the microstructure, especially the presence of large interconnected ionic domains or ionic channels. Block SPAEK membranes have interconnected ionic clusters to provide continuous hydrophilic channels, resulting in higher proton conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   

16.
Novel locally sulfonated poly(ether sulfone)s with highly sulfonated units were successfully synthesized for fuel cell applications. Poly(ether sulfone)s were prepared by the nucleophilic substitution of bis(4‐fluorophenyl) sulfone with 1,2,4,5‐tetrakis([1,1′‐biphenyl]‐2‐oxy)‐3,6‐bis(4‐hydroxyphenoxy)benzene and bis(4‐hydroxyphenyl) sulfide, followed by oxidation using m‐chloroperoxybenzoic acid. The desired highly sulfonated units were easily introduced by postsulfonation and each one had ten sulfonic acid groups. The sulfonated polymers gave tough, flexible, and transparent membranes by solvent casting. The high contrast in polarity between highly sulfonated units and hydrophobic poly(ether sulfone) units enabled the formation of defined phase‐separated structures and well‐connected proton paths. The sulfonated polymers exhibited excellent proton conductivity over a wide range of relative humidities. The proton conductivity of the sulfonated polymer with an ion exchange capacity value of 2.38 mequiv/g was comparable to that of Nafion 117 even at 30% relative humidity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3444–3453, 2009  相似文献   

17.
New sulfonated poly(imidoaryl ether sulfone) copolymers derived from sulfonated 4,4′‐dichlorodiphenyl sulfone, 4,4′‐dichlorodiphenyl sulfone, and imidoaryl biphenol were evaluated as polymer electrolyte membranes for direct methanol fuel cells. The sulfonated membranes were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, and proton nuclear magnetic resonance spectra. The state of water in the membranes was measured with differential scanning calorimetry, and the existence of free water and bound water was discussed in terms of the sulfonation level. The 10 wt % weight loss temperatures of these copolymers were above 470 °C, indicating excellent thermooxidative stability to meet the severe criteria of harsh fuel‐cell conditions. The proton conductivities of the membranes ranged from 3.8 × 10?2 to 5 × 10?2 S/cm at 90 °C, depending on the degree of sulfonation. The sulfonated membranes maintained the original proton conductivity even after a boiling water test, and this indicated the excellent hydrolytic stability of the membranes. The methanol permeabilities ranged from 1.65 × 10?8 to 5.14 × 10?8 cm2/s and were lower than those of other conventional sulfonated ionomer membranes, particularly commercial perfluorinated sulfonated ionomer (Nafion). The properties of proton and methanol transport were discussed with respect to the state of water in the membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5620–5631, 2005  相似文献   

18.
Polymer blending is used to modify or improve the dimensional and thermal stability of any two different polymers or copolymers. In this study, both sulfonated polybenzimidazole homopolymer (MS-p-PBI 100) and sulfonated poly(aryl ether benzimidazole) copolymers (MS-p-PBI 50, 60, 70, 80, 90) were successfully synthesized from commercially available monomers. The chemical structure and thermal stability of these polymers was characterized by 1H NMR, FT-IR and TGA techniques. Blend membranes (BMs) were prepared from the salt forms of sulfonated poly(ether sulfone) (PES 70) and MS-p-PBI 100 using dimethylacetamide (DMAc). These blend membranes exhibited good stability in boiling water. The blending of 1 wt.% of MS-p-PBI 100 and 99 wt.% of PES 70 to produce the blend membrane BM 1 reduced membrane swelling, thus leading to good dimensional stability and comparable proton conductivity. Hence, BM 1 was chosen for the fabrication of a membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) applications. This paper reports on PEMFC and DMFC performance under specific conditions.  相似文献   

19.
Sulfonated polyaryletherketones (SPAEK) bearing four sulfonic acid groups on the phenyl side groups were synthesized. The benzophenone moiety of polymer backbone was further reduced to benzydrol group with sodium borohydride. The membranes were crosslinked by acid-catalyzed Friedel-Crafts reaction without sacrifice of sulfonic acid groups and ion exchange capacity (IEC) values. Crosslinked membranes with the same IEC value but different water uptake could be prepared. The optimal crosslinking condition was investigated to achieve lower water uptake, better chemical stability (Fenton's test), and higher proton conductivity. In addition, the hydrophilic ionic channels from originally course and disordered could be modified to be narrow and continuous by this crosslinking method. The crosslinked membranes, CS4PH-40-PEKOH (IEC = 2.4 meq./g), reduced water uptake from 200 to 88% and the weight loss was reduced from 11 to 5% during the Fenton test compared to uncrosslinked one (S4PH-40-PEK). The membrane showed comparable proton conductivity (0.01–0.19 S/cm) to Nafion 212 at 80°C from low to high relative humidity (RH). Single H2/O2 fuel cell based on the crosslinked SPAEK with catalyst loading of 0.25 mg/cm2 (Pd/C) exhibited a peak power density of 220.3 mW/cm2, which was close to that of Nafion 212 (214.0 mW/cm2) at 80°C under 53% RH. These membranes provide a good option as proton exchange membrane with high ion exchange capacity for fuel cells.  相似文献   

20.
A series of aromatic sulfonated polyimides (SPIs) bearing sulfophenoxy side groups have been successfully synthesized and evaluated as polymer electrolyte membranes for fuel cell applications. The SPIs had high viscosity and gave tough and flexible membranes. The SPI membranes showed anisotropic membrane swelling in water with much larger dimensional change in thickness direction than in plane one. They showed the better proton‐conducting performance even in the lower relative humidity (RH) range than the other SPI membranes, for example, a high proton conductivity of 0.05 S/cm at 50 % RH and 120 °C. They maintained high mechanical strength and conductivity after aging in water at 130 °C for 500 h, showing much better water stability compared with the main‐chain‐type SPI and side‐chain‐type SPI membranes reported so far. In polymer electrolyte fuel cells (PEFCs) operated at 90 °C and 84–30%RH, they showed fairly high cell performances and have high potential for PEFC applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1463–1477, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号