首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel method was developed to prepare poly(benzoxazinone‐imide) by the dealcoholization of poly(amide‐imide), having pendent ethoxycarbonyl groups, which was prepared from poly(amide acid). The poly(amide acid) was prepared from the reaction of pyromellitic dianhydride and 4,4′‐diamino‐6‐ethoxycarbonyl benzanilide. The curing behavior of the poly(amide acid) was monitored by DSC, which indicated the presence of two broad endotherms, one with maximum at 153 °C due to imide‐ring formation and the other with maximum at 359 °C due to benzoxazinone‐ring formation. The poly(amide acid) was thermally treated at 300 °C/1 h to get poly(amide‐imide) with pendent ester groups, then at 350 °C/2 h to convert into poly(benzoxazinone‐imide) by dealcoholization. Viscoelastic measurements of the poly(amide‐imide) showed that the storage modulus dropped at about 280 °C with glass‐transition temperature (Tg ) at about 340 °C. The storage modulus of poly(benzoxazinone‐imide), however, was almost constant up to 400 °C and no Tg was detected below 400 °C. Also, the tensile modulus and tensile strength of the poly(benzoxazinone‐imide) was much higher than that of the poly(amide‐imide). The 5% decomposition of poly(benzoxazinone‐imide) film was at 535 °C, which reflects its excellent thermal stability. Also, poly(benzoxazinone‐imide) showed more hydrolytic stability against alkali in comparison to polyimides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1647–1655, 2000  相似文献   

2.
A CF3‐containing diamine, 1,4‐bis(4‐amino‐2‐trifluromethylphenoxy) benzene ( I ), was prepared from hydroquinone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( V a–h and VI a,b ) were prepared through the condensation reaction of amino acids, aromatic diamines, and trimellitic anhydride. Then, a series of soluble fluorinated polyamides ( VII a–h ) and poly(amide imide)s ( VIII a–h and X a,b ) were synthesized from I with various aromatic diacids ( II a–h ) and imide‐containing diacids ( V a–h and VI a,b ) via direct polycondensation with triphenyl phosphate and pyridine. The polyamides and poly(amide imide)s had inherent viscosities of 1.00–1.70 and 0.79–1.34 dL/g, respectively. All the synthesized polymers showed excellent solubility in amide‐type solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, and N‐dimethylformamide and afforded transparent and tough films via solvent casting. Polymer films of VII a–h , VIII a–h , and X a,b had tensile strengths of 91–113 MPa, elongations to break of 8–40%, and initial moduli of 2.1–2.8 GPa. The glass‐transition temperatures of the polyamides and poly(amide imide)s were 254–276 and 255–292 °C, respectively, and the imide‐containing poly(amide imide)s had better thermal stability than the polyamides. The polyamides showed higher transparency and were much lighter in color than the poly(amide imide)s, and their cutoff wave numbers were below 400 nm. In comparison with isomeric IX c – h , poly(amide imide)s VIII c–h exhibited less coloring and showed lower yellowness indices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3116–3129, 2004  相似文献   

3.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

4.
Three new bis(ether‐acyl chloride) monomers, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]cyclohexane ( 1a ), 5,5‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐4,7‐methanohexahydroindan ( 1b ), and 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]fluorene ( 1c ), were synthesized from readily available compounds. Aromatic polybenzoxazoles bearing ether and cardo groups were obtained by the low‐temperature solution polycondensation of the bis(ether‐acyl chloride)s with three bis(aminophenol)s and the subsequent thermal cyclodehydration of the resultant poly(o‐hydroxy amide)s. The intermediate poly(o‐hydroxy amide)s exhibited inherent viscosities in the range of 0.35–0.71 dL/g. All of the poly(o‐hydroxy amide)s were amorphous and soluble in many organic polar solvents, and most of them could afford flexible and tough films by solvent casting. The poly(o‐hydroxy amide)s exhibited glass‐transition temperatures (Tg's) in the range of 141–169 °C and could be thermally converted into the corresponding polybenzoxazoles approximately in the region of 240–350 °C, as indicated by the DSC thermograms. Flexible and tough films of polybenzoxazoles could be obtained by thermal cyclodehydration of the poly(o‐hydroxy amide) films. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility as compared with their poly(o‐hydroxy amide) precursors. They exhibited Tg's of 215–272 °C by DSC and showed insignificant weight loss before 500 °C in nitrogen or air. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4014–4021, 2001  相似文献   

5.
Two new benzoxazole or benzothiazole‐containing diimide‐dicarboxylic acid monomers, such as 2‐[3,5‐bis(N‐trimellitimidoyl)phenyl]benzoxazole ( 2 o ) or 2‐[3,5‐bis(N‐trimellitimidoyl)phenyl]benzothiazole ( 2 s ) were synthesized from the condensation reaction between 3,5‐diaminobenzoic acid and 2‐aminophenol or 2‐aminothiophenol in polyphosphoric acid (PPA) with subsequent reaction of trimellitic anhydride in the presence of glacial acetic acid, respectively, and two new series of modified aromatic poly(amide‐imide)s were prepared. This preparation was done with pendent benzoxazole or benzothiazole units from the newly synthesized diimide‐dicarboxylic acid and various aromatic diamines by triphenyl phosphite‐activated polycondensation. In addition, the corresponding unsubstituted poly(amide‐imide)s were prepared under identical experimental conditions for comparative purposes. Characterization of polymers was accomplished by inherent viscosity measurements, FT‐IR, UV–visible, 1H‐NMR spectroscopy and thermogravimetry. The polymers were obtained in quantitative yields with inherent viscosities between 0.39 and 0.81 dl g?1. The solubilities of modified poly(amide‐imide)s in common organic solvents as well as their thermal stability were enhanced compared to those of the corresponding unmodified poly(amide‐imide)s. The glass transition temperature, 10% weight loss temperature, and char yields at 800°C were, respectively, 7–26°C, 17–46°C and 2–5% higher than those of the unmodified polymers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
New diene and dithiol monomers, based on aromatic imides such as benzophenone‐3,3′,4,4′‐tetracarboxylic diimide were synthesized and used in thiol‐ene polymerizations which yield poly(imide‐co‐thioether)s. These linear polymers exhibit limited solubility in various organic solvents. The molecular weights of the polymers were found to decrease with increasing imide content. The glass transition temperature (Tg) of these polymers is dependent on imide content, with Tg values ranging from ?55 °C (with no imide) up to 13 °C (with 70% imide). These thermal property improvements are due to the H‐bonding and rigidity of the aromatic imide moieties. Thermal degradation, as studied by thermogravimetric analysis, was not significantly different to the nonimide containing thiol‐ene polymers made using trimethyloylpropane diallyl ether and 3,5‐dioxa‐1,8‐dithiooctane. It is expected that such monomers may lead to increased glass transition temperatures in other thiol‐ene polymer systems as these normally exhibit low glass transition temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4637–4642  相似文献   

7.
Two types of novel fluorinated diimide‐diacid monomers—[2,2′‐(4,4′‐(3′‐methylbiphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (III) and [2,2′‐(4,4′‐(3′‐(trifluoromethyl)biphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (IV)—were respectively designed and prepared by the condensation of diamines I and II with two molar equivalents of trimellitic anhydride. From both diimide‐diacids, two series of novel poly(amide‐imide)s (PAIs) (IIIa–IIIe and IVa–IVe) bearing different pendant groups were prepared by direct polymerization with various aromatic diamines (a–e). All the PAIs had a high glass transition temperatures (Tgs, 232–265 °C), excellent thermal stability (exhibiting only 5% weight loss at 493–542 °C under nitrogen) and good solubility in various organic solvents due to the introduction of the bulky pendant groups. The cast films of these PAIs (80–90 μm) had good optical transparency (73–81% at 450 nm, 85–88% at 550 nm and 87–89% at 800 nm) and low dielectric constants (2.65–2.98 at 1 MHz). The spin‐coated films of these PAIs presented a minimum birefringence value as low as 0.0077–0.0143 at 650 nm and low optical absorption at the near‐infrared optical communication wavelengths of 1310 and 1550 nm. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3243–3252  相似文献   

8.
A series of poly(amide–imide)s IIIa–m containing flexible isopropylidene and ether groups in the backbone were synthesized by the direct polycondensation of 4,4′‐[1,4‐phenylenebis(isopropylidene‐1,4‐phenyleneoxy)]dianiline (PIDA) with various bis(trimellitimide)s IIa–m in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The resulting poly(amide–imide)s had inherent viscosities in the range of 0.80–1.36 dL/g. Except for those from the bis(trimellitimide)s of p‐phenylenediamine and benzidine, all the polymers could be cast from DMAc into transparent and tough films. They exhibited excellent solubility in polar solvents. The 10% weight loss temperatures of the polymers in air and in nitrogen were all above 495°C, and their Tg values were in the range of 201–252°C. Some properties of poly(amide–imide)s III were compared with those of the corresponding poly(amide–imide)s V prepared from the bis(trimellitimide) of diamine PIDA and various aromatic diamines. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 69–76, 1999  相似文献   

9.
Benzoxazine monomer (Ba) was blended with soluble poly(imide‐siloxane)s in various weight ratios. The soluble poly(imide‐siloxane)s with and without pendent phenolic groups were prepared from the reaction of 2,2′‐bis(3,4‐dicarboxylphenyl)hexafluoropropane dianhydride with α,ω‐bis(aminopropyl)dimethylsiloxane oligomer (PDMS; molecular weight = 5000) and 3,3′‐dihydroxybenzidine (with OH group) or 4,4′‐diaminodiphenyl ether (without OH group). The onset and maximum of the exotherm due to the ring‐opening polymerization for the pristine Ba appeared on differential scanning calorimetry curves around 200 and 240 °C, respectively. In the presence of poly(imide‐siloxane)s, the exothermic temperatures were lowered: the onset to 130–140 °C and the maximum to 210–220 °C. The exotherm due to the benzoxazine polymerization disappeared after curing at 240 °C for 1 h. Viscoelastic measurements of the cured blends containing poly(imide‐siloxane) with OH functionality showed two glass‐transition temperatures (Tg's), at a low temperature around ?55 °C and at a high temperature around 250–300 °C, displaying phase separation between PDMS and the combined phase consisting of polyimide and polybenzoxazine (PBa) components due to the formation of AB‐crosslinked polymer. For the blends containing poly(imide‐siloxane) without OH functionalities, however, in addition to the Tg due to PDMS, two Tg's were observed in high‐temperature ranges, 230–260 and 300–350 °C, indicating further phase separation between the polyimide and PBa components due to the formation of semi‐interpenetrating networks. In both cases, Tg increased with increasing poly(imide‐siloxane) content. Tensile measurements showed that the toughness of PBa was enhanced by the addition of poly(imide‐siloxane). Thermogravimetric analysis showed that the thermal stability of PBa also was enhanced by the addition of poly(imide‐siloxane). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2633–2641, 2001  相似文献   

10.
A series of poly(ether imide)s (PEIs), III a–k , with light color and good physical properties were prepared from 1,4‐bis(3,4‐dicarboxypheoxy)‐2,5‐di‐tert‐butylbenzene dianhydride ( I ) with various aromatic diamines ( II a–k ) via a conventional two‐stage procedure that included a ring‐opening polyaddition to yield poly(amic acid)s (PAA), followed by thermal imidization to the PEI. The intermediate PAA had inherent viscosities in the range of 1.00–1.53 dL g?1. Most of the PEIs showed excellent solubility in chlorinated solvents such as dichloromethane, chloroform, and m‐cresol, but did not easily dissolve in dimethyl sulfoxide and amide‐type polar solvents. The III series had tensile strengths of 96–116 MPa, an elongation at break of 7–8%, and initial moduli of 2.0–2.5 GPa. The glass‐transition temperatures (Tg) and softening temperatures (Ts's) of the III series were recorded between 232 and 285 °C and 216–279 °C, respectively. The decomposition temperatures for 10% weight loss all occurred above 511 °C in nitrogen and 487 °C in air. The III series showed low dielectric constants (2.71–3.54 at 1 MHz), low moisture absorption (0.18–0.66 wt %), and was light‐colored with a cutoff wavelength below 380 nm and a low yellow index (b*) values of 7.3–14.8. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1270–1284, 2005  相似文献   

11.
A new type of tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid, 4,4′‐oxydiphthalic anhydride, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I . A series of soluble and light‐colored poly(amide‐imide‐imide)s ( III a–j) was prepared by triphenyl phosphite‐activated polycondensation from I with various aromatic diamines ( II a–j). All films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 390 nm (374–390 nm) and b* values between 25.26 and 43.61; these polymers were much lighter in color than the alternating trimellitimide series. All of the polymers were readily soluble in a variety of organic solvents such as NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even in less polar m‐cresol and pyridine. Polymers III a–j afforded tough, transparent, and flexible films that had tensile strengths ranging from 96 to 118 MPa, elongations at break from 9 to 11%, and initial moduli from 2.0 to 2.5 GPa. The glass‐transition temperatures of the polymers were recorded at 240–268 °C. They had 10% weight loss at a temperature above 540 °C and left more than 55% residue even at 800 °C in nitrogen. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 707–718, 2002; DOI 10.1002/pola.10153  相似文献   

12.
A series of new poly(imide‐hydrazide)s and poly(amide‐imide‐hydrazide)s were obtained by the direct polycondensation of N‐[p‐(or m‐)carboxyphenyl]trimellitimide (p‐ or m‐CPTMI) with terephthalic dihydrazide (TPH), isophthalic dihydrazide (IPH), and p‐aminobenzhydrazide (p‐ABH) by means of diphenyl phosphite and pyridine in the N‐methyl‐2‐pyrrolidone (NMP) solutions containing dissolved CaCl2. The resulting hydrazide‐containing polymers exhibited inherent viscosities in the 0.15–0.96 dL/g range. Except for that derived from p‐CPTMI with TPH or p‐ABH, the other hydrazide copolymers were readily soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). As evidenced by X‐ray diffraction patterns, the hydrazide copolymer obtained from TPH showed a moderate level of crystallinity, whereas the others were amorphous in nature. Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The amorphous hydrazide copolymers had glass‐transition temperatures (Tg) between 187 and 233 °C. All hydrazide copolymers could be thermally converted into the corresponding oxadiazole copolymers approximately in the region of 250–400 °C, as evidenced by the DSC thermograms. The oxadiazole copolymers showed a significantly decreased solubility when compared to their respective hydrazide precursors. They exhibited Tg's of 264–302 °C and did not show dramatic weight loss before 400 °C in air or nitrogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1599–1608, 2000  相似文献   

13.
Two new phenyl‐ and naphthyl‐substituted rigid‐rod aromatic dicarboxylic acid monomers, 2,2′‐diphenylbiphenyl‐4,4′‐dicarboxylic acid ( 4 ) and 2,2′‐di(1‐naphthyl)biphenyl‐4,4′‐dicarboxylic acid ( 5 ), were synthesized by the Suzuki coupling reaction of 2,2′‐diiodobiphenyl‐4,4′‐dicarboxylic acid dimethyl ester with benzeneboronic acid and naphthaleneboronic acid, respectively, followed by alkaline hydrolysis of the ester groups. Four new polyhydrazides were prepared from the dicarboxylic acids 4 and 5 with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. These polyhydrazides were amorphous and readily soluble in many organic solvents. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass transition temperatures in the range of 187–234 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(1,3,4‐oxadiazole)s exhibited Tg's in the range of 252–283 °C, 10% weight‐loss temperature in excess of 470 °C, and char yield at 800 °C in nitrogen higher than 54%. These organo‐soluble polyhydrazides and poly(1,3,4‐oxadiazole)s exhibited UV–Vis absorption maximum at 262–296 and 264–342 nm in NMP solution, and their photoluminescence spectra showed maximum bands around 414–445 and 404–453 nm, respectively, with quantum yield up to 38%. The electron‐transporting properties were examined by electrochemical methods. Cyclic voltammograms of the poly(1,3,4‐oxadiazole) films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited reversible reduction redox with Eonset at ?1.37 to ?1.57 V versus Ag/AgCl in dry N,N‐dimethylformamide solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6466–6483, 2006  相似文献   

14.
A series of new soluble poly(amide‐imide)s were prepared from the diimide‐dicarboxylic acid 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane with various diamines by direct polycondensation in N‐methyl‐2‐pyrrolidinone containing CaCl2 with triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.52–0.86 dL · g?1. The poly(amide‐imide)s showed an amorphous nature and were readily soluble in various solvents, such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, and cyclohexanone. Tough and flexible films were obtained through casting from DMAc solutions. These polymer films had tensile strengths of 71–107 MPa and a tensile modulus range of 1.6–2.7 GPa. The glass‐transition temperatures of the polymers were determined by a differential scanning calorimetry method, and they ranged from 242 to 279 °C. These polymers were fairly stable up to a temperature around or above 400 °C, and they lost 10% of their weight from 480 to 536 °C and 486 to 537 °C in nitrogen and air, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3498–3504, 2001  相似文献   

15.
A novel tetraimide dicarboxylic acid was synthesized with the ring‐opening addition of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, 4,4′‐oxydianiline, and trimellitic anhydride in a 1/2/2 molar ratio in N‐methyl‐2‐pyrrolidone followed by azeotropic condensation to tetraimide dicarboxylic acid. A series of poly(amide imide imide)s (PAIIs) with inherent viscosities of 0.8–1.1 dL/g were prepared from tetraimide dicarboxylic acid with various aromatic diamines by direct polycondensation. Most of the PAIIs were readily soluble in a variety of amide polar solvents and even in less polar m‐cresol and pyridine. Solvent‐cast films had tensile strengths ranging from 99 to 106 MPa, elongations at break ranging from 8 to 13%, and initial moduli ranging from 2.0 to 2.3 GPa. The glass‐transition temperatures of these PAIIs were recorded at 244–276 °C. They had 10% weight losses at temperatures above 520 °C in air or nitrogen atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1092–1102, 2002  相似文献   

16.
In this research, a new fluorinated diamine based on 2,2′‐substituted 1,1′‐binaphthyl units, 2,2′‐bis(2‐amino‐4‐trifluoromethylphenoxy)‐1,1′‐binaphthyl (AFPBN) was synthesized and then used to prepare the corresponding ortho‐linked poly(ether‐imide)s via chemical polyimidization with several aromatic carboxylic dianhydrides. The resulting poly(ether‐imide)s were fully characterized by FT‐IR, NMR, viscosity measurements, gel‐permeation chromatography, UV–vis, X‐ray diffraction, organo‐solubility, thermogravimetric analysis (TGA), and differential scanning calorimetry. Probing optical behavior of the colorless films prepared from these poly(ether‐imide)s demonstrated that they possess a high degree of optical transparency, and UV–visible absorption cut‐off wavelength values were found to be in the range of 404–471 nm. The resulting polymers exhibited excellent organo‐solubility in polar solvents such as dimethylformamide, dimethyl sulfoxide, pyridine, and even tetrahydrofuran. To investigate the heat stability of the samples, their thermograms obtained from TGA were plotted, and for example, it is found that the 10% weight loss temperature of representative polymer AFPBN/3,3′,4,4′‐benzophenonetetracarboxylic dianhydride occurred at 532°C in nitrogen. These poly(ether‐imide)s had glass‐transition temperatures (Tg's) up to 280°C. Two previously prepared analogues of AFPBN, i.e. nonfluorinated diamine DAM1 and para‐linked fluorinated diamine DAM2 used to prepare the corresponding poly(ether‐imide)s, were also considered to compare the results obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A dicarboxylic acid {1,1‐bis[4‐(4‐trimellitimidophenoxy)phenyl]‐1‐phenylethane ( II )} bearing two performed imide rings was prepared from the condensation of 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane and trimellitic anhydride in a 1/2 molar ratio. A novel family of poly(amide‐imide)s with inherent viscosities of 0.83–1.51 dL/g was prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid II with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. Because the 1,1,1‐triphenylethane group of II was unsymmetrical, most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N‐dimethylacetamide. All the soluble poly(amide‐imide)s afforded tough, transparent, and flexible films, which had tensile strengths ranging from 88 to 102 MPa, elongations at break from 6 to 11%, and initial moduli from 2.23 to 2.71 GPa. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures from 250 to 287 °C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses from 501 to 534 °C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 775–787, 2001  相似文献   

18.
A series of novel polyimides (PIs) ( 3a–d ) were prepared from 3,3′,5,5′‐tetramethyl‐4,4′‐diaminodiphenyl‐4 ″ ‐isopropyltoluene ( 1 ) with four aromatic dianhydrides via a one‐step high temperature polycondensation procedure. The obtained PIs showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents and chlorinated solvents. Their films were nearly colorless and exhibited high‐optical transparency, with the UV cutoff wavelength in the range of 328–353 nm and the transparency at 450 nm >80%. They also showed low‐dielectric constant (2.49–2.94 at 1 MHz) and low‐water absorptions (0.44–0.65%). Moreover, these PIs possessed high‐glass transition temperatures (Tg) beyond 327 °C and excellent thermal stability with 10% weight loss temperatures in the range of 530–555 °C in nitrogen atmosphere. In comparison with some fluorinated poly(ether imide)s derived from the trifluoromethyl‐substituted bis(ether amine)s, the resultant PIs 3a–d showed better solubility, lower cutoff wavelength, and higher Tg. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3309–3317, 2009  相似文献   

19.
A new approach to obtain imide‐containing elastic polymers (IEPs) via elastic and high‐molecular‐weight polyureas, which were prepared from α‐(4‐aminobenzoyl)‐ω‐[(4‐aminobenzoyl)oxy]‐poly(oxytetramethylene) and the conventional diisocyanates such as tolylene‐2,4‐diisocyanate(2,4‐TDI), tolylene‐2,6‐diisocyanate(2,6‐TDI), and 4,4′‐diphenylmethanediisocyanate (MDI), was investigated. IEP solutions were prepared in high yield by the reaction of the polyureas with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone (NMP) at 165°C for 3.7–5.2 h. IEPs were obtained by the thermal treatment at 200°C for 4 h in vacuo after NMP was evaporated from the resulting IEP solutions. We assumed a mechanism of the reaction via N‐acylurea from the identification of imide linkage and amid acid group in IEP solutions. NMR and FTIR analyses confirmed that IEPs were segmented polymers composed of imide hard segment and poly(tetramethylene oxide) (PTMO) soft segment. The dynamic mechanical and thermal analyses indicated that the IEPs prepared from 2,6‐TDI and MDI showed a glass‐transition temperature (Tg ) at about −60°C, corresponding to Tg of PTMO segment, and suggested that microphase‐separation between the imide segment and the PTMO segment occured in them. TGA studies indicated the 10% weight‐loss temperatures (T10) under air for IEPs were in the temperature range of 343–374°C. IEPs prepared from 2,6‐TDI and MDI showed excellent tensile properties and good solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 715–723, 2000  相似文献   

20.
A new one‐pot procedure for imide–acid monomer synthesis and polymerization is reported for four new poly(amide–imide)s. Bisphenol A dianhydride (BPADA) was reacted with twice the molar amount of 3‐aminobenzoic acid (3ABA) or 3‐amino‐4‐methylbenzoic acid (3A4MBA) in 1‐methyl‐2‐pyrrolidinone (NMP) and toluene mixture, and the amic acid intermediates cyclized in solution to give two diimide‐containing dicarboxylic acid monomers. Without isolation, the diacid monomers were then polymerized with either 1,3‐diaminomesitylene (DAM) or 1,5‐diaminonaphthalene (1,5NAPda) using triphenyl phosphite‐activation to give a series of four soluble poly(amide–imide)s, PAI. Isolation and purification of the dicarboxylic acid monomers was not necessary for formation of high molecular weight polymers as indicated by intrinsic viscosities of 0.64–1.04 dL/g determined in N,N‐dimethylacetamide (DMAc). All of the PAI were soluble in polar aprotic solvents such as NMP, DMAc, and dimethyl sulfoxide (DMSO). Glass transition temperatures ranged from 243 to 279°C by DSC, and 5% weight loss temperatures were above 400°C in both air and nitrogen. Flexible films cast from DMAc were light yellow, transparent, and tough. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1183–1188, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号