首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex melting behavior of isotactic polypropylene, after isothermal crystallization, was studied within the context of step‐like melting mechanisms which were previously proposed for high temperature polymers. The morphological characteristics of the melting process were also studied as a function of molecular weight, and close similarities were observed with respect to high temperature polymers. Positive birefringence crystals of low molecular weight samples developed double melting behavior in three steps. The first melting step was assigned to continuous melting of secondary crosshatch reversing lamellae, together with recrystallization of the remaining isothermal crystals. In the second melting step (first melting endotherm), crystals tended to lose their original coarse negative birefringence due to melting of secondary reversing branching. This effect rendered new, finer texture, but still negative birefringence crystals. In the third melting step (second melting endotherm), there was a combination of melting of two crystal populations, one consisting of the remaining fraction of reversing primary crystals, and the other consisting of nonreversing primary crystals. A crosshatch secondary branching model was therefore proposed to explain the overall results. Mixed birefringence spherulites of high molecular weight samples displayed similar, although proportional, behavior under identical crystallization and melting conditions corroborating the proposed melting mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2188–2200, 2008  相似文献   

2.
Isotactic polypropylene (iPP) was crystallized using temperature modulation in a differential scanning calorimeter (DSC) to thicken the crystals formed on cooling from the melt. A cool-heat modulation method was adopted for the preparation of the samples under a series of conditions. The effect of modulation parameters, such as temperature amplitude and period was monitored with the heating rate that followed. Thickening of the lamellae as a result of the crystallization treatment enabled by the cool-heat method lead to an increase in the peak melting temperature and the final traces of melting. For instance, iPP melting peak shifted by up to 3.5°C with temperature amplitude of 1.0°C while the crystallinity was increased from 0.45 (linearly cooled) to 0.53. Multiple melting endotherms were also observed in some cases, but this was sensitive to the temperature changes experienced on cooling. Even with a slower underlying cooling rate and small temperature amplitudes, some recrystallization and reorganization occurred during the subsequent heating scan. The crystallinity was increased significantly and this was attributed to the crystal perfection that occurred at the crystal growth surface. In addition, temperature modulated differential scanning calorimetry (TMDSC) has been used to study the melting of iPP for various crystallization treatments. The reversing and non-reversing contribution under the experimental time scale was modified by the relative crystal stability formed during crystallization. Much of the melting of iPP was found to be irreversible.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Crystallization and melting behaviors of isotactic polypropylene (iPP) nucleated with compound nucleating agents of sodium 2,2′‐methylene‐bis (4,6‐di‐tert‐butylphenyl) phosphate (hereinafter called as NA40)/dicyclohexylterephthalamide (hereinafter called as NABW) (weight ratio of NA40 to NABW is 1:1) were studied by differential scanning calorimetry and wide‐angle X‐ray diffraction (WAXD), the relative β‐amount of iPP nucleated with these compound nucleating agents was also calculated in Turner‐Jones equation by using wide‐angle X‐ray diffraction data. Under isothermal crystallization, there exists a temperature range favorable for formation of β‐iPP. When the concentration of compound nucleating agents is 0.2 wt %, the temperature range is from 100 to 140 °C. While in nonisothermal crystallization, lower cooling rate is favorable for form of β‐iPP and the relative β‐amount of iPP increases with the decreasing of cooling rate in crystallization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 911–916, 2008  相似文献   

4.
This article reports crystallization behaviors of isotactic polypropylene (iPP) with an aryl amide derivative (TMB‐5) as β‐form nucleating agent. The effects of nucleating agent concentration, thermal history and assemble morphology of nucleating agent on the crystallization behaviors of iPP were studied by differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy. The results indicated that the TMB‐5 concentration should surpass a threshold value to get products rich in β‐iPP. The diverse morphologies of TMB‐5 are determined by nucleating agent concentration and crystallization condition. At higher concentrations, the recrystallized TMB‐5 aggregates into needle‐like structure, which induces mixed polymorphic phases on the lateral surface and large amount of β modification around the tip. High β nucleation efficiency was obtained at the lowest studied crystallization temperature, which is desirable for real molding process. TMB‐5 prefers to recrystallize from the melt at higher concentration and lower crystallization temperature. The difference in solubility, pertinent to concentration and crystallization temperature, determined the distinct crystallization behaviors of iPP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1725–1733, 2008  相似文献   

5.
Structure and morphology development during the isothermal crystallization and subsequent melting of syndiotactic polypropylene (sPP) was studied with differential scanning calorimetry (DSC), time‐resolved simultaneous small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) methods with synchrotron radiation. The morphology of sPP isothermally crystallized at 100 °C for 3 h was also characterized with transmission electron microscopy (TEM). Time‐ and temperature‐dependent parameters such as the long period (L), crystal lamellar thickness (lc), amorphous layer thickness (la), scattering invariant (Q), crystallinity (Xc), lateral crystal sizes (L200 and L010), and unit cell dimensions (a and b) were extracted from the SAXS and WAXD data. Results indicate that the decreases in L and lc with time are probably due to the formation of thinner crystal lamellae, and the decreases in a and b are due to crystal perfection. The changes in the morphological parameters (Q, Xc, L, and lc) during subsequent melting exhibited a two‐stage process that was consistent with the multiple melting peaks observed in DSC. The two high‐temperature peaks can be attributed to the melting of primary lamellae (at lower temperatures) and recrystallized lamellae (at higher temperatures). An additional minor peak, located at the lowest temperature, was also visible and was related to the melting of thin and defective secondary lamellae. TEM results are consistent with the SAXS data, which supports the assignment of the larger value (l1) from the correlation function analysis as lc. WAXD showed that the thermal expansion was greater along the b axis than the a axis during melting. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2982–2995, 2001  相似文献   

6.
The multiple melting behavior of poly(ε‐caprolactone) (PCL) was investigated by real‐time small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) measurements coupling with differential scanning calorimetry (DSC). Semicrystalline specimens prepared by a continuous cooling process showed lengthening of the Bragg period during the progress of double melting. A model of variable thickness of lamella was proposed to fit to the SAXS patterns and revealed that both the crystalline lamella and the amorphous layer contributed to the increase in Bragg period while the later dominated the contribution. The model of variable thickness although satisfied the SAXS data was unable to compromise the data from other probing tools. A modification of the model proposed that each lamella piling up to construct the stacks in the crystallites was itself nonuniform in thickness. The modification with the parallel occurrence of the mechanism of surface melting and crystallization successfully compromised the observations from SAXS, DSC, and optical microscopy and provided a new perspective for the explanation to lengthening of the Bragg period related to multiple melting behavior. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1777–1785, 2010  相似文献   

7.
Differential scanning calorimetry and fast scanning chip calorimetry heating experiments were carried out in a wide range of rates of temperature change from 0.2 to 60,000 K s?1 for isothermally crystallized polyamide 6. Multiple melting peaks were observed. With increasing heating rate, the highest‐temperature endotherm shifts toward lower temperatures and finally disappears due to suppression of the reorganization. The critical heating rate to suppress reorganization was 15–50 times higher than the critical cooling rate to cause complete vitrification. On heating at rates higher than the critical heating rate to suppress reorganization, there were observed two melting processes of different kinetics. Four possible assignments were considered regarding the two crystal populations. These are (i) crystals grown during primary and secondary crystallization, (ii) crystals grown in the bulk and nucleated at the surface/substrate, (iii) crystals, which are subjected to different local stress originating from heterogeneities in interlamellar regions, and (iv) the crystal/mesophase polymorphism. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2126–2138  相似文献   

8.
We examine the crystallization and chain conformation behavior of semicrystalline poly(ethylene oxide) (PEO) and amorphous poly(vinyl acetate) (PVAc) mixtures with wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering (SAXS), and small‐angle neutron scattering (SANS) experiments. For blends with PEO weight fractions (wtPEO) greater than or equal to 0.3, below the melting point of PEO, the WAXD patterns reveal that crystalline PEO belongs to the monoclinic system. The unit‐cell parameters are independent of wtPEO. However, the bulk crystallinity determined from WAXD decreases as wtPEO decreases. The scattered intensities from SAXS experiments show that the systems form an ordered crystalline/amorphous lamellar structure. In a combination of WAXD and SAXS analysis, the related morphological parameters are assigned correctly. With the addition of amorphous PVAc, both the average amorphous layer thickness and long spacing increase, whereas the average crystalline layer thickness decreases. We find that a two‐phase analysis of the correlation function from SAXS, in which the scattering invariant is linearly proportional to the volume fraction of lamellar stacks, describes quantitatively the crystallization behavior of PEO in the presence of PVAc. When wtPEO is close to 1, the samples are fully spaced‐filled with lamellar stacks. As wtPEO decreases from 1.0 to 0.3, more PVAc chains are excluded from the interlamellar region into the interfibrillar region. The fraction outside the lamellar stacks, which is completely occupied with PVAc chains, increases from 0 to 58%. Because the radius of gyration of PVAc with a random‐coil configuration determined from SANS is smaller than the average amorphous layer thickness from SAXS, we believe that the amorphous PVAc chains still persist with a random‐coil configuration even when the blends form an ordered structure. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2705–2715, 2001  相似文献   

9.
In this study, we examine the effects of heating, nucleation, cooling, and reheating on the thermal properties and structure of metallocene isotactic polypropylene (m‐iPP) that had been prepared initially in a standard state containing nearly equal amounts of the crystallographic α and γ phases. Heat treatment was achieved through partial melting and annealing by the heating of samples to self‐nucleation temperatures (Tn's) that spanned and exceeded the entire range of melting of the standard state, from 122 to 160 °C. The relative amounts of α and γ crystals are determined from the area under the unique wide‐angle X‐ray reflections. The lower and upper endotherms are caused by the melting of γ and α crystals, respectively. Four distinct regions of Tn were identified on the basis of the thermal and structural parameters of m‐iPP. In region I, Tn is below the peak melting temperature of the γ phase. Here, γ crystals are annealed and α crystals are barely affected by Tn. In region II, Tn is above the peak of the lower endotherm but below the peak of the upper endotherm. γ crystals melt, and α crystals anneal. In both regions I and II, the portion of the sample melted at Tn recrystallizes epitaxially with existing parent α lamellae as the substrates, and the amount of α always exceeds the amount of γ. In region III, Tn is above the peak of the upper endotherm, and all γ crystals and some or all α crystals are melted at Tn. The number of α‐crystal nuclei steadily decreases as Tn increases, causing systematic depression of the crystallization and melting temperatures seen during cooling. Finally, in region IV, Tn exceeds the upper endotherm, and only small self‐nuclei or heterogeneous nuclei remain. Recrystallization is now suppressed to lower temperatures. For regions III and IV, a crossover behavior in the relative amounts of α and γ is observed during cooling from Tn. Because of the effective nucleating ability of α toward γ, as the temperature drops, the amount of γ increases and then exceeds the amount of α. With subsequent reheating, the reverse crossover occurs because of the lower melting point of γ. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1644–1660, 2002  相似文献   

10.
The melting behavior of spherulites in thin sections of isotactic polypropylene bulk samples and high-density polyethylene thin films crystallized isothermally at various temperatures has been studied by polarized light microscopy. The regions around cavities and multiple boundary points between spherulites have higher melting temperatures than the other parts of spherulites crystallized in Regime III. The increase in melting temperature is explained as a result of crystallization under negative pressure arising locally in pockets of occluded melt due to density change during spherulitic crystallization. The negative pressure lowers locally the equilibrium melting temperature and therefore decreases the undercooling, which results in an increase in lamellar thickness. Sectioning of bulk samples releases frozen negative pressure and reveals the increase in melting temperature of those parts of spherulites that were crystallized at lower undercooling. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
In this study, memory effect of mesomorphic isotactic polypropylene (iPP) was investigated using polarized optical microscope and small‐angle X‐ray scattering. Differing from classical memory effect, mesomorphic iPP melt had a higher growth rate and a higher memory temperature. The relative growth rate increased with increasing crystallization temperature. Lauritzen–Hoffman plots indicated that the increased growth rate arose from reduced surface nucleation barrier. The highest memory temperature was estimated to be 185 °C, which was close to the equilibrium melting point of iPP crystal. Additionally, Small‐angle X‐ray scattering measurements showed that a liquid crystal layer might exist between lamellar and amorphous layers. Based on above results, a crystallization model was proposed. In the mesomorphic iPP melt, there exist aggregates structurally similar to β phase except α‐phase crystal residuals, which cannot act as nucleation sites or transform to β crystal through surface nucleation. The only way for the aggregate is to transform to α crystal during crystal growth. The aggregate decreases the surface nucleation barrier and promotes the helical growth, leading to higher growth rate. Only when the aggregate relaxes to polymer coils through thickening at a higher temperature, can the memory effect be erased. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1573–1580  相似文献   

12.
The crystallization and phase morphology of the injection‐molded isotactic polypropylene (iPP)/syndiotactic polypylenen (sPP) blends were studied, focusing on the difference between the skin layer and core layer. The distribution of crystallinity of PPs in the blends calculated based upon the DSC results shows an adverse situation when compared with that in the neat polymer samples. For 50/50 wt % iPP/sPP blend, the SEM results indicated that a dispersed structure in the skin layer and a cocontinuous structure in the core layer were observed. A migration phenomenon that the sPP component with lower crystallization temperature and viscosity move to the core layer, whereas the iPP component with higher crystallization temperature and viscosity move to the skin layer, occurred in the iPP/sPP blend during injection molding process. The phenomenon of low viscosity content migrate to the low shear zone may be due to the crystallization‐induced demixing based upon the significant difference of crystallization temperature in the sPP and iPP. This migration caused the composition inhomogeneity in the blend and influenced the accuracy of crystallinity calculated based upon the initial composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2948–2955, 2007  相似文献   

13.
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001  相似文献   

14.
Summary: We performed molecular dynamics simulation of a charged colloidal particle with explicit counterions. Our work provides a direct comparison between simulations and ASAXS‐experiments, offering insight into the counterion distribution of charged colloidal suspensions. We give a detailed constitution of the appearing scattering terms with their physical meaning. It is shown that the cross‐correlation between a macroion and its counterions gives the meanfield approximation of the counterion density even if the counterion system is highly fluctuating. Furthermore, it is shown that cross‐correlations can be negative due to oscillations of the density amplitudes of the macroion and counterions and, therefore, must be distinguished from other scattering contributions. These oscillations become more pronounced if the counterions exhibit a fixed shape and if the size of the macroion and that of the counterion system are different.

Simulation sanpshot of a charged colloid (big central sphere) with counterions (small spheres).  相似文献   


15.
To analyze the natural rubber behavior during vulcanization under different cure treatments, an experimental investigation using small angle X‐ray scattering was performed. To achieve this, a set of samples were prepared using sulfur and Nt‐butyl‐2‐benzothiazole sulfenamide as accelerator and then cured at temperatures between 403 and 463 K reaching their optimum mechanical properties considering rheometer tests. The crosslink density of the samples was evaluated by means of the swelling technique in solvent. In the usual Lorentz corrected representation of the X‐ray scattered intensity, a maximum was observed in the plots corresponding to the cured samples, revealing a highly correlated structure. This maximum shifted toward higher values of the scattering vector when the cure temperature of the samples increased. This behavior is discussed in terms of the crosslinks type present in the vulcanized rubber network at different cure temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2966–2971, 2007  相似文献   

16.
Segment‐segment interaction of poly(methylmethacrylate) in t‐butyl alcohol‐water mixtures in poor solvent regime was studied. From the small‐angle X‐ray scattering measurements of semidilute solution range, the binary and ternary cluster integrals of polymer segments were determined from concentration dependence of the correlation length at various temperatures just above the upper critical solution temperature. We have calculated the contributions of the segment–segment interaction to the entropy and enthalpy from the measured temperature dependence of these interaction parameters and found that both quantities are negative and decrease with decreasing t‐butyl alcohol content. FT‐IR absorption peak of carbonyl group of poly(methylmethacrylate) shifts to the lower frequency with increasing water content. The implications of these findings are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2195–2199, 1999  相似文献   

17.
The conformational changes occurring in isotactic polypropylene during the melting and crystallization processes have been carefully investigated using FT‐Raman spectroscopy at temperatures below, at, and above the polymer melting point. Results confirmed the retention of some crystallinity up to +210 °C, which is 50 °C above the melting point. It was found that, at temperatures just above the melting point (1–10 °C), there is still some short range order of at least 12 monomer units long in certain regions of the melt. At 10 °C above the melting point, the short range order drops below 12 monomer units resulting in the disappearance of the Raman band at 841 cm–1. Vice versa, the experimental measurements show that the iPP melt system is stable when the persistence length of helical sequences is less than 12 monomer units. As soon as the helix length exceeds 12 units, the 31 helix conformation extends quickly and then crystallization occurs. These results are discussed in terms of Imai's microphase separation theory and it agreed very well with it. Also, from our observations for correlation splitting, Raman bands related to conformational states were identified. This analysis indicates the existence of three different conformational states at 808, 830, and 841 cm–1. The 808 cm–1 band was assigned to helical chains within crystals (representing crystalline phase). The 841 cm–1 band was shown to be composed of a band at 841 cm–1, assigned to shorter chains in helical conformation with isomeric defects (representing the isomeric defect phase), and a broader band at 830 cm–1 assigned to chains in nonhelical conformation (representing the melt‐like amorphous phase). This indicates the detection of a three‐phase structure in iPP, where a third phase could be due to the presence of defect regions within the crystalline region, or due to the presence of an amorphous–crystal interphase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2173–2182, 2006  相似文献   

18.
We used inelastic neutron scattering to probe the low‐energy excitations in semicrystalline isotactic polypropylenes with different degrees of crystallinity. The contributions from the amorphous and crystalline regions to the total scattering intensity were extracted under the assumption of a weighted linear contribution of the two regions in a simplified two‐phase system. The resulting intensity from the amorphous region showed a peak at 1.2 meV that was in good agreement with the previously determined boson peak characteristic of atactic polypropylene. The possibility of a contribution to the boson peak region by longitudinal acoustic mode modes that are characteristic of semicrystalline polymers and appear in the same low‐frequency region is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2852–2859, 2001  相似文献   

19.
Sodium benzoate (SB), a conventional nucleating agent of α‐phase isotactic polypropylene (iPP) was discovered to induce the creation of β‐phase iPP under certain crystalline conditions. Polarized optical microscopy (POM) and wide angle X‐ray diffraction (WAXD) were carried out to verify the versatile nucleating activity of SB and investigate the influences of SB's content, isothermal crystallization temperature, and crystallization time on the formation of β‐phase iPP. The current experimental results indicated that, under isothermal crystallization conditions, SB showed peculiar nucleating characteristics on inducing iPP crystallization which were different from those of the commercial β form nucleating agent (TMB‐5). The content of β crystal form of iPP nucleated with SB (PP/SB) increased initially with the increase of crystallization temperature, nucleating agent (SB) percentage or crystallization time, reached a maximum value, and then decreased as the crystallization temperature, nucleating agent percentage or crystallization time further increased. While the content of β crystal form of iPP nucleated with TMB‐5 (PP/TMB‐5) showed a completely different changing pattern with the crystallization conditions. The obvious difference of the two kinds of nucleating agents on inducing iPP crystallization can be explained by the versatile nucleating ability of SB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1183–1192, 2008  相似文献   

20.
The crystallization behavior after partial or complete melting of the α phase of iPP is examined by combined differential scanning calorimetry (DSC) and optical microscopy: calorimetric results are directly correlated with corresponding morphologies of microtome sections of DSC samples. On partial melting at various temperatures (hereafter referred to as Ts) located in a narrow range (4°C) below and near Tm, the number of nuclei increases (as in classical self-nucleation experiments), by several orders of magnitude; on subsequent cooling, the crystallization peak is shifted by up to 25°C. After partial melting in the lower part of the Ts range and recrystallization, the polymers display a prominent morphology “memory effect” whereby a phantom pattern of the initial spherulite morphology is maintained. After partial melting in the upper part of the Ts range the initial morphology is erased and self-nucleation affects only the total number of nuclei. The present experimental procedures make it possible to define, under “standard” conditions, the crystallization range of the polymer and in particular, the maximum crystallization temperature achievable when “ideally” nucleated. © John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号