首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid gel is synthesized by physical mixing of agarose and carbopol and an interpenetrating network of Agarose‐Carbopol (AC) hybrid gel is observed by atomic force microscopy. This hybrid gel exhibits pH‐responsiveness and mechanical stability as well as tunable swelling. These hydrogels depict a nonmonotonic swelling behavior as a function of pH. In particular, the equilibrium degree of swelling increases with pH of bath solution until its maximum value around pH = , followed by a decrease at higher pH values. The degree of swelling is increased by the concentration of carbopol when the concentration of agarose is low [ ], or decreased by the concentration of agarose when is high [ ]. A physics‐based model is also adapted to characterize the swelling‐shrinking behavior of different compositions of AC gels. This swelling‐shrinking behavior of AC hydrogels will have potential applications in smart hydrogel‐based devices. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 444–454  相似文献   

2.
In this work, a model based in strong‐stretching theory for polymer brushes grafted to finite planar surfaces is developed and solved numerically for two geometries: stripe‐like and disk‐like surfaces. There is a single parameter, , which represents the ratio between the equilibrium brush height and the grafting surface size, that controls the behavior of the system. When is large, the system behaves as if the polymer were grafted to a single line or point and the brush adopts a cylindrical or spherical shape. In the opposite extreme when it is small, the brush behaves as semi‐infinite and can be described as a planar undeformed brush region and an edge region, and the line tension approaches a limiting value. In the intermediate case, a brush with non‐uniform height and chain tilting is observed, with a shape and line tension depending on the value of . Relative stability of disk‐shaped, stripe‐shaped, and infinite lamellar micelles is analyzed based in this model. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 663–672  相似文献   

3.
We report a small angle neutron scattering (SANS) and rheology study of cellulose derivative polyelectrolyte sodium carboxymethyl cellulose with a degree of substitution of 1.2. Using SANS, we establish that this polymer is molecularly dissolved in water with a locally stiff conformation with a stretching parameter . We determine the cross sectional radius of the chain ( 3.4 Å) and the scaling of the correlation length with concentration (ξ = 296 c?1∕2Å for c in g/L) is found to remain unchanged from the semidilute to concentrated crossover as identified by rheology. Viscosity measurements are found to be in qualitative agreement with scaling theory predictions for flexible polyelectrolytes exhibiting semidilute unentangled and entangled regimes, followed by what appears to be a crossover to neutral polymer concentration dependence of viscosity at high concentrations. Yet those higher concentrations, in the concentrated regime defined by rheology, still exhibit a peak in the scattering function that indicates a correlation length that continues to scale as . © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 492–501  相似文献   

4.
In the electrospinning process, the measurement of extension rate of the straight jet is not an easy task. In this study, the diameter profile of the tapering straight jet is determined with a laser light‐scattering technique. Afterwards, the jet extension rate () is derived and used to compare with the solution‐intrinsic rates, for example, the terminal relaxation rate and the Rouse relaxation rate. The extension rate of the straight jet depends on position: it is highest near the cone apex (region I) and decays to a constant value in the major jet (region II) until approaching the jet end (region III), at which the extension rate abruptly drops to nearly zero, that is, I >IIIII ∼ 0. The jet diameter in region III is independent of solution concentration and applied voltage, but is scaled to the flow rate with an exponent of ∼0.37. The derived exponent is consistent with a simple prediction based on the counterbalance between the stretching electric force and the compressive force induced by the air drag force. Provided that air friction becomes overwhelming at the straight jet end, the long electrified jet is likely to buckle, thereby triggering the instability of jet whipping. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 319–329  相似文献   

5.
The assembly of poly(3‐hextylthiophene) (P3HT) in solvent mixtures is studied using solubility and solvatochromic parameters. Correlations between the excitonic coupling of P3HT assemblies and the Kamlet–Taft (α, β, π*) and solvent scales reveal that lower excitonic coupling values are observed in binary mixtures characterized by low β values (0 < β ≤ 0.25) and low polarity (0.1 ≤ ≤ 0.3). Hansen solubility theory is revisited by evaluating the directionality of the solubility distance, Ra. Relationships between the excitonic coupling and the Δδh and Δδp vector components indicate that the polarity of the solvent (Δδp) and the specific solvent‐solvent interactions reflected by the Δδh component direct the formation of well‐ordered P3HT aggregates. The complementary results of the solubility and solvatochromic parameter analyses are in agreement with one another. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 841–850  相似文献   

6.
We perform high‐coordination three‐dimensional (3D) lattice simulations of a single chain of N monomers embedded in matrices of quenched chains, at different concentrations ρ, using pruned‐enriched Rosenbluth sampling. The partition function is well‐described by the expression, , where is a universal constant, and is the concentration dependent lattice connectivity constant. For sufficiently long chains, , we find that the radius of gyration R varies nonmonotonically with ρ; R decreases gradually from its unperturbed dimensions R0 until , after which it increases relatively rapidly due to repulsion between monomers. Motivated by the similarity in the shape of the curves, and results on Gaussian chains, we successfully superpose all the simulation data onto a single master curve. Finally, we test the relationship , suggested by a Flory‐type scaling model, where ρc is the critical percolation threshold, and is a universal constant. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1611–1619  相似文献   

7.
Semiconductor quantum dots (QDs) can be used as alternative for transition metal complexes to harvest the nonemissive triplet excitons in organic light‐emitting diodes (OLEDs). In search for a QD‐based OLED material generating blue emission, poly(9‐vinylcarbazole) (PVK) and poly(9‐(2,3‐epoxypropyl) carbazole) (PEPK) are chosen as host for blue‐emitting CdSe/ZnS core/shell QDs. The QDs are encapsulated with 16‐(N‐carbazolyl) hexadecanoic acid (C16), a ligand terminated by a carbazole moiety. As alternative for PVK, PEPK, where the lower molecular weight and less extensive excimer formation could promise a better film formation and more extensive exciton hopping, is explored. The efficiencies of singlet ( ) and triplet ( ) energy transfer to the C16 capped QDs are estimated by combining stationary photoluminescence spectra and fluorescence decays of pristine polymer films with those of polymer films doped with the QDs. At a loading of 30 wt % of the QDs, increases from 12 ± 1% in PVK to 41 ± 2% in PEPK while increases from 37 ± 22% in PVK to 72 ± 48% in PEPK. The investigation of the film morphology by atomic force microscopy confirms that the main factor limiting the triplet transfer efficiency in the PVK matrix is the clustering of the C16 capped QDs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 539–551  相似文献   

8.
Aggregates – that is short‐ranged ordered moieties in the solid‐state of π‐conjugated polymers – play an important role in the photophysics and performance of various optoelectronic devices. We have previously shown that many polymers change from a disordered to a more ordered conformation when cooling a solution below a characteristic critical temperature . Using in situ time‐resolved absorption spectroscopy on the prototypical semiconducting polymers P3HT, PFO, PCPDTBT, and PCE11 (PffBT4T‐2OD), we show that spin‐coating at a temperature below can enhance the formation of aggregates with strong intra‐chain coupling. An analysis of their time‐resolved spectra indicates that the formation of nuclei in the initial stages of film formation for substrates held below seems responsible for this. We observe that the growth rate of the aggregates is thermally activated with an energy of 310 meV, which is much more than that of the solvent viscosity (100 meV). From this we conclude that the rate controlling step is the planarization of a chain that is associated with its attachment to a nucleation center. The success of our approach for the rather dynamic deposition method of spin‐coating holds promise for other solution‐based deposition methods. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 532–542  相似文献   

9.
In this work, by adopting the united atom model of cis‐1,4‐poly(butadiene) (PB), we systemically investigate the effect of the chain structure on the glass transition temperature (Tg) and the viscoelastic property of PB system. First, we analyze the atom translational mobility, bond reorientation dynamics, torsional dynamics, conformational transition rate, and dynamic heterogeneity of the PB chains with different chain structures in detail by determining the corresponding Tg. In addition, our results clearly indicate that with the decrease of the amount of the free end atoms of PB via the end‐linking method, the mobility of the PB chains quickly decreases. As a result, the Tg of the PB chains gradually increases. Depending on the chain structure and the calculation method, the Tg of the PB chains varies from 154 to 240 K. In addition, the temperature dependence of the dynamic properties has different Arrhenius behaviors above and below Tg. The calculated activation energy varies from 7.37 to 16.37 KJ/mol for different chain structures above Tg, which can be compared with those for other polymers. In addition, through the end‐linking approach the strong interaction between the PB chains improves the storage modulus G′ and the loss modulus . Meanwhile, the immobility of the free end atoms effectively reduces the friction loss of the chains under the shear field, which is reflected by the low loss factor . In summary, this work can further help to understand the effect of the chain structure on the dynamic properties of the PB chains. Meanwhile, it provides an effective approach to reduce the energy loss during the dynamic periodic deformation, which can cut the fuel consumption via the end‐linking method. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1005–1016  相似文献   

10.
The dynamics of semicrystalline poly(vinylidene fluoride‐trifluoroethylene‐chlorotrifluoroethylene) (P(VDF‐TrFE‐CTFE)) terpolymers were fully investigated as a function of temperature and frequency, by means of broadband dielectric spectroscopy. Four types of relaxation regimes were observed over the full dielectric spectroscopy, namely (second) relaxation in the sub‐glass state, (segmental dynamics) in the rubbery state, the Curie transition and space charge carrier motion at high temperatures. Constrained segmental dynamics were observed in the terpolymer containing the highest crystalline fraction for which a narrow relaxation time distribution was found. These results indicate a decreasing average size of the cooperative rearranging region over the crystalline fraction. A decrease of the strength index values also implied a more fragile behavior for terpolymers with a higher degree of crystallinity. An exceptional increase in dielectric strength was found as the crystallinity increased. This behavior could be explained by an enhanced interphase (constrained amorphous phase). The Curie transition showed an accelerating relaxation rate for a more fragile terpolymer. Moreover, a motion of the space charge carrier ions was observed in the higher temperature range. Finally, there was evidence that the segmental dynamics in the amorphous phase was responsible for the motion of the space charge carrier ions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1645–1657  相似文献   

11.
The indentation strain rate is currently assumed to remain unvaried during continuous stiffness measurement (CSM) nanoindentation where is imposed to remain constant. To probe the validity of this assumption for the nanoindentation of glassy polymers, a series of experiments have been performed at different set values on poly(methyl methacrylate) and polycarbonate using CSM technique. It is firstly shown that the actual value changes drastically at shallow indentation depths and it takes a considerable depth, which is material independent, for this parameter to attain a stabilized value. Furthermore, the strain rate is measured directly as the descent rate of the indenter divided by its instantaneous depth ( ), and indirectly via considering the variations of the load and hardness during the test. Both of these approaches reveal that the strain rate is considerably larger at shallow depths, and the depth beyond which it becomes constant is material and ratio dependent. Finally, by considering the relationship between the hardness and strain rate, it is observed that although the strain rate variation alters the hardness, its contribution is not able to justify the observed indentation size effect; hence, other contributing factors for this phenomenon are discussed for their possible effects. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2179–2187  相似文献   

12.
Whispering gallery mode microresonators have been triggering considerable advances in science due to their ability to confine light within small dielectric volumes, which makes them suitable for a wide range of applications. Lithographic approaches have been the dominant technique for fabricating microresonators; however, they restrict the choice of materials due to their multistep processing nature. As an alternative, they report the direct laser fabrication of acrylic based hollow microcylinder resonators, via two‐photon polymerization, with good structural integrity and sidewall roughness of 1.5 nm, which make them promising candidates for photonic applications in the near‐infrared. Such polymeric microresonators exhibit finesse close to 103 and a quality factor of 1 105, a performance achieved without any additional processing step, which would restrict the choices of materials to be incorporated into the polymeric resonator. This advantage thereby broadens the widespread use of the polymeric microresonators, making them an excellent platform for lasing and nonlinear optics studies in the near‐infrared. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 569–574  相似文献   

13.
An accurate semianalytic wavefunction is proposed for the Hookium and two‐electron atoms for varying strength of where is the strength parameter and is coulomb interaction between two electrons. The wavefunction leads to energies that are as accurate as those from the Coupled cluster singles and doubles (CCSD) calculations. Using this wavefunction, we construct the external potential such that the density of the system remains unchanged as is varied. The work thus gives a unified picture of adiabatic connection for these systems based on an easy to use wavefunction and complements the past investigations done in this direction. Using the potential obtained, we explicitly calculate the energy of the corresponding positive ions and show that the chemical potential—calculated as the difference between the energies of the two‐electron system and its positive ion—is equal to the experimental ionization energy and remains unchanged as is varied. Furthermore, using total energies of these systems as a function of , we provide a new perspective into a variety of hybrid functionals.  相似文献   

14.
For a reaction to proceed via tunneling mechanism, it is essential that the reactants will cross the potential barrier (EP), where its initial energy (E0) is below the potential barrier EP. Tunneling probability τ is defined as the probability of having momentum higher than km, where . In the momentum basis representation, τ can be directly calculated by integrating from the limit km to infinity, where is the wave function in the momentum space. Instead of the continuous basis, if we chose momentum grid space, τ can be expressed as . Our target here is to increase this τ by applying a polychromatic field, so that the reaction rate can be enhanced. By applying Simulated Annealing technique we have designed some polychromatic electric fields, spatially symmetric and asymmetric type, which enhances the tunneling rate in symmetric double well system and Eckart barrier confined in an infinite well.  相似文献   

15.
An algorithm to compute efficiently the first two derivatives of (very) large multideterminant wavefunctions for quantum Monte Carlo calculations is presented. The calculation of determinants and their derivatives is performed using the Sherman–Morrison formula for updating the inverse Slater matrix. An improved implementation based on the reduction of the number of column substitutions and on a very efficient implementation of the calculation of the scalar products involved is presented. It is emphasized that multideterminant expansions contain in general a large number of identical spin‐specific determinants: for typical configuration interaction‐type wavefunctions the number of unique spin‐specific determinants ( ) with a non‐negligible weight in the expansion is of order . We show that a careful implementation of the calculation of the Ndet ‐dependent contributions can make this step negligible enough so that in practice the algorithm scales as the total number of unique spin‐specific determinants, , over a wide range of total number of determinants (here, Ndet up to about one million), thus greatly reducing the total computational cost. Finally, a new truncation scheme for the multideterminant expansion is proposed so that larger expansions can be considered without increasing the computational time. The algorithm is illustrated with all‐electron fixed‐node diffusion Monte Carlo calculations of the total energy of the chlorine atom. Calculations using a trial wavefunction including about 750,000 determinants with a computational increase of ~400 compared to a single‐determinant calculation are shown to be feasible. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
The coil–globule transition and dynamics of a lattice self‐avoiding bond fluctuation polymer chain confined in slit are studied by Monte Carlo simulations. The coil–globule transition temperature of polymer chain is increased at intermediate slit height H (HRG0 with RG0 the radius of gyration of polymer in dilute solution) due to the squeeze of the polymer in the repulsive slit, but it is decreased by surface attraction as the polymer is extended along the surface. We have compared the difference between the rotational relaxation time τR for the reorientation of end‐to‐end vector and the relaxation time τ for the polymer diffusing over a distance of the size of polymer. We find that τR is clearly distinct from τ as they have different scaling exponents in their slit height‐dependent behaviors and for the polymer in the extended coil state, that is, αR > α. And both exponents increase with an increase in the intrapolymer attraction and surface attraction. However, these scaling relations are destroyed by strong surface attraction when the polymer is adsorbed on surfaces. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1053–1062  相似文献   

17.
Using fast scanning calorimetry, we determined the crystallinity of thin films of poly(3‐hexylthiophene) crystallized from the melt from measurements of the specific melting enthalpy. A broad range of film thicknesses from 10 µm down to 26 nm was covered. The sample mass was determined from measurements of the specific heat capacity in the molten state allowing a quantitative analysis of the heat flow data. Films with a thickness 400 nm slowly cooled from the melt showed the same crystallinity as bulk samples measured with conventional DSC. Below 350 nm the melting enthalpy decreased strongly. We assign this strongly reduced crystallinity to the restricted crystallization kinetics originating from hindered spherulitic growth under thin film confinement. A higher crystallinity could be partially regained by extended isothermal crystallization at elevated temperatures. Much faster cooling, with rates above about 100 Ks?1 led to a partial suppression of crystallization even for thick films. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1791–1801  相似文献   

18.
Spectra of a bounded diatomic molecule is studied numerically. Shifted Deng–Fan oscillator potential has been used to model the molecule. The accurate five‐point finite difference method has been used to solve the Schrödinger equation for rovibrational motion of the molecule. The energies of the bound states as well as free states of the molecule have been calculated. In addition, radial matrix elements like , n = 1, 2, and 3 have been calculated. These have been used to calculate the ‐pole static polarizabilities. The variation of bound state energies, matrix elements and ‐pole static polarizabilities with the boundary radius has also been studied. The Stark effect in case of this bounded system has also been investigated.  相似文献   

19.
A new series of divalent boron‐rare gas cations (Rg = He ∼ Rn, n = 1–4) have been predicted theoretically at the B3LYP, MP2, and CCSD(T) levels to present the structures, stability, charge distributions, bond natures, and aromaticity. The Rg B bond energies are quite large for heavy rare gases and increase with the size of the Rg atom. Because of steric hindrance new Rg atoms introduced to the B4 ring will weaken the Rg B bond. Thus in the Rg B bond has the largest binding energy 90–100 kcal/mol. p‐ has a slightly shorter Rg B bond length and a larger bond energy than o‐ . NBO and AIM analyses indicate that for the heavy Rg atoms Ar ∼ Rn the B Rg bonds have character of typical covalent bonds. The energy decomposition analysis shows that the σ‐donation from rare gases to the boron ring is the major contribution to the Rg B bonding. Adaptive natural density partitioning and nuclear‐independent chemical shift analyses suggest that both and have obvious aromaticity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号