首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Considering the ionic nature of ionic liquids (ILs), ionic association is expected to be essential in solutions of ILs and to have an important influence on their applications. Although numerous studies have been reported for the ionic association behavior of ILs in solution, quantitative results are quite scarce. Herein, the conductivities of the ILs [Cnmim]Br (n=4, 6, 8, 10, 12), [C4mim][BF4], and [C4mim][PF6] in various molecular solvents (water, methanol, 1‐propanol, 1‐pentanol, acetonitrile, and acetone) are determined at 298.15 K as a function of IL concentration. The conductance data are analyzed by the Lee–Wheaton conductivity equation in terms of the ionic association constant (KA) and the limiting molar conductance (Λm0). Combined with the values for the Br? anion reported in the literature, the limiting molar conductivities and the transference numbers of the cations and [BF4]? and [PF6]? anions are calculated in the molecular solvents. It is shown that the alkyl chain length of the cations and type of anion affect the ionic association constants and limiting molar conductivities of the ILs. For a given anion (Br?), the Λm0 values decrease with increasing alkyl chain length of the cations in all the molecular solvents, whereas the KA values of the ILs decrease in organic solvents but increase in water as the alkyl chain length of the cations increases. For the [C4mim]+ cation, the limiting molar conductivities of the ILs decrease in the order Br?>[BF4]?>[PF6]?, and their ionic association constants follow the order [BF4]?>[PF6]?>Br? in water, acetone, and acetonitrile. Furthermore, and similar to the classical electrolytes, a linear relationship is observed between ln KA of the ILs and the reciprocal of the dielectric constants of the molecular solvents. The ILs are solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation. This information is expected to be useful for the modulation of the IL conductance by the alkyl chain length of the cations, type of anion, and physical properties of the molecular solvents.  相似文献   

2.
Liquid–liquid equilibrium diagrams were determined for (IL + water) systems using the family of ILs 1-alkyl-3-methylimidazolium tetrafluoroborates, where the alkyl groups are hexyl and octyl ([Cxmim][BF4] with x = 6 and 8). The gravimetric method was used to determine the equilibrium compositions at temperatures ranging from 278.15 to 340.15 K. Both systems present an upper critical solution temperature (UCST), which increases from [C6mim][BF4] to [C8mim][BF4]. The experimental data were correlated using the NRTL and eNRTL models. The binary interaction parameters were calculated for each system and model, and good agreement between experimental and calculated equilibrium compositions was obtained. Finally, the apparent Gibbs energy, enthalpy and entropy of water solution in the ILs were calculated using a modified van’t Hoff equation. The three thermodynamic functions were found to be positive for both ILs.  相似文献   

3.
Lyotropic liquid crystals (LLCs) formed in tetraethylene glycol lauryl ether–water system by the addition of 1-alkyl-3-methylimidazolium tetrafluoroborate ([C n Mim][BF4], n?=?2, 4, 6, 8, 10) are characterised by polarised optical microscopy and small-angle X-ray scattering techniques. A small number of [C n Mim][BF4] molecules can be solubilised in the liquid crystal without changing the lamellar type. These imidazolium salts are considered as an ideal kind of modifiers for the ordered structure. With different lengths of alkyl chains, [C n Mim][BF4] molecules appear in various domains of ordered assemblies: in the water layer for [C2Mim][BF4], in the water layer as well as in the polar domain for [C4Mim][BF4] and in the apolar domain for the other imidazolium salts with long alkyl chains. Diverse distributions of [C n Mim][BF4] molecules in the inner structure bring about their specific influence on the lamellar phase. These results enlighten the use of diverse alkyl-substituted imidazolium salts in modulating LLC and other assemblies and also enrich the aggregation behaviour of these assemblies.  相似文献   

4.
This work shows how the nanostructuration of ionic liquids (ILs) governs the glass and melting transitions of the bistriflimide imidazolium‐based [CnC1im][NTf2] and [CnCnim][NTf2] series, which highlights the trend shift that occurs at the critical alkyl size (CAS) of n=6. An initial increase in the glass temperature (Tg) with an increase in the alkyl side chain was observed due to the intensification of the dispersive interactions (van der Waals). Above the CAS, the ?CH2? increment has the same effect in both glass and liquid states, which leads to a plateau in the glass transition after nanostructuration. The melting temperature (Tm) of the [CnC1im][NTf2] and [CnCnim][NTf2] series presents a V‐shaped profile. For the short‐alkyl ILs, the ?CH2? increment affects the electrostatic ion pair interactions, which leads to an increase in the conformational entropy. The ?CH2? increment disturbs the packing ability of the ILs and leads to a higher entropy value ( ) and consequently a decrease in Tm. Above the CAS, the ?CH2? contribution to the melting temperature becomes more regular, as a consequence of the nanostructuration of the IL into polar and nonpolar domains. The dependence of the alkyl chain on the temperature, enthalpy, and entropy of melting in the ILs above the CAS is very similar to the one observed for the alkane series, which highlights the importance of the nonpolar alkyl domains on the ILs thermal behavior.  相似文献   

5.
The impact of a reactant from the gas phase on the surface of a liquid and its transfer through this gas/liquid interface are crucial for various concepts applying ionic liquids (ILs) in catalysis. We investigated the first step of the adsorption dynamics of n‐butane on a series of 1‐alkyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide ILs ([CnC1Im][Tf2N]; n=1, 2, 3, 8). Using a supersonic molecular beam in ultra‐high vacuum, the trapping of n‐butane on the frozen ILs was determined as a function of surface temperature, between 90 and 125 K. On the C8‐ and C3‐ILs, n‐butane adsorbs at 90 K with an initial trapping probability of ≈0.89. The adsorption energy increases with increasing length of the IL alkyl chain, whereas the ionic headgroups seem to interact only weakly with n‐butane. The absence of adsorption on the C1‐ and C2‐ILs is attributed to a too short residence time on the IL surface to form nuclei for condensation even at 90 K.  相似文献   

6.
The thermoresponsive poly(ionic liquid) of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate] trithiocarbonate (P[VBMI][BF4]‐TTC) showing the soluble‐to‐insoluble phase transition in the methanol/water mixture at the upper critical solution temperature (UCST) was synthesized by solution RAFT polymerization and the synthesized P[VBMI][BF4]‐TTC was employed as macro‐RAFT agent to mediate the RAFT polymerization under dispersion condition to afford the thermoresponsive diblock copolymer nanoparticles of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate]‐b‐polystyrene (P[VBMI][BF4]‐b‐PS). The controllable solution RAFT polymerization was achieved as indicated by the linearly increasing polymer molecular weight with the monomer conversion and the narrow molecular weight distribution. The P[VBMI][BF4]‐TTC macro‐RAFT agent mediated dispersion polymerization afforded the P[VBMI][BF4]‐b‐PS nanoparticles, the size of which was uncorrelated with the polymerization degree of the P[VBMI][BF4] block. Several parameters including the polymerization degree, the polymer concentration and the water content in the solvent of the methanol/water mixture were found to be correlated with the UCST of the poly(ionic liquid). The synthesized poly(ionic liquid) is believed to be a new thermos‐responsive polymer and will be useful in material science. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 945–954  相似文献   

7.
An ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([C4mim] [BF4]), was first used as the solvent in azobisisobutyronitrile (AIBN)‐initiated reverse atom transfer radical polymerization (RATRP) of acrylonitrile with FeCl3/succinic acid (SA) as the catalyst system. The polymerization in [C4mim][BF4] proceeded in a well‐controlled manner as evidenced by kinetic studies. Compared with the polymerization in bulk, the polymerization in [C4mim][BF4] not only showed the best control of molecular weight and its distribution but also provided rather rapid reaction rate with the ratio of [C4mim][BF4] at 200:1:2:4. The polymerization apparent activation energies in [C4mim][BF4] and bulk were calculated to be 48.2 and 55.7 kJ mol?1, respectively. Polyacrylonitrile obtained was successfully used as a macroinitiator to proceed the chain extension polymerization in [C4mim][BF4] via a conventional ATRP process. [C4mim][BF4] and the catalyst system could be easily recycled and reused after simple purification and had no effect on the living nature of polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2701–2707, 2008  相似文献   

8.
An NMR study of 10 l-alanine- and l-valine-containing peptides was carried out in the native [C2MIM][Cl], [C4MIM][Cl], [C6MIM][Cl], [C4MIM][BF4], [C4MIM][PF6], and [C4Py][BF4] ionic liquid media. A unique high sensitivity of the ionic liquid system to the nature of peptide and ability to tune solvent–solute interactions were observed in contrast to regular organic solvents. The l-valine peptides can be selectively dissolved in [C4MIM][Cl] and [C6MIM][Cl], whereas their solubility in [C2MIM][Cl] and other ionic liquids was dramatically lower. In spite of structural similarity between the amino acids, a distinct behavior was observed for the l-alanine peptides. Solvent–solute interactions with an ionic liquid impose significant changes, and NMR spectroscopy is a useful probe for the molecular-level and nanoscale organization of the studied systems. An even/odd effect of the number of amino acids in the peptide on molecular interactions in ionic liquids was observed. Enhancement of chemical properties of peptides in ionic liquids and application of ionic liquids in the separation of peptides are the areas of practical interest in the studied systems.  相似文献   

9.
We present the first systematic study of the influence of temperature on the degree of surface enrichment of 1-alkyl-3-methylimidazolium-based ionic liquids (ILs). Using angle-resolved X-ray photoelectron spectroscopy, we demonstrate that the degree of surface enrichment strongly decreases with increasing temperature for all the studied ILs. For ILs with the same cation, but different anions, [C8C1Im]Br, [C8C1Im][TfO] and [C8C1Im][Tf2N], no significant differences of the temperature-induced partial loss of surface enrichment are found. Measurements for [C4C1Im][TfO], [C8C1Im][TfO] and [C18C1Im][TfO] indicate a small effect of the chain length. For [C18C1Im][TfO], a continuous decrease of alkyl surface enrichment is found with increasing temperature, with no abrupt changes at the phase-transition temperature from the smectic A to the isotropic phase, indicating that the surface enrichment is not affected by this phase transition.  相似文献   

10.
The iron‐containing ionic liquids 1‐butyl‐3‐methylimidazolium tetrachloroferrate(III) [C4mim][FeCl4] and 1‐dodecyl‐3‐methylimidazolium tetrachloroferrate(III) [C12mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 °C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35 % in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow‐brown liquid phase recovered after phase separation is the starting IL [C4mim][FeCl4] and [C12mim][FeCl4], respectively. Photometry and ICP‐OES show that about 40 % of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal‐containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction.  相似文献   

11.
The molecular interactions of the ionic liquids (ILs) 1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4], 3‐methyl‐1‐octylimidazolium tetrafluoroborate [C8mim][BF4] and 1‐butyl‐3‐methylimidazolium octylsulfate [C4mim][C8OSO3] are investigated in ethylene glycol (EG) over the whole mole fraction range using fluorescence (steady‐state and time‐resolved), Fourier transform infrared and nuclear magnetic resonance (NMR) spectroscopy. The cybotactic region surrounding the pyrene fluorescent probe exhibits peculiar characteristics for different ILs in the EG‐rich region. The extent of solute–solvent interactions is assessed by determining the deviations of experimentally observed vibronic band intensity ratios of peak 1 to peak 3 of pyrene fluorescence (I1/I3) from a composite I1/I3 value obtained using a preferential solvation model. A distinct vibrational frequency shift for various stretching modes of EG (O? H) or ILs (C? H of ring protons, B? F and S?O of anions) indicates specific interactional preferences of EG toward the IL protons/anion. Splitting of the O? H vibration band of EG at 3000–3700 cm?1 into three separate bands, and analysis of the changes in location and area of these bands as a function of concentration enable precise determination of the effect of ILs on hydrogen bridges of EG. NMR chemical shifts and their deviations from ideality show multiple hydrogen‐bonding interactions of varying strengths between unlike molecules in the mixtures. A comparison of spectroscopic results with thermodynamic properties shows that the mixing microscopic behaviour of the investigated systems is completely different from the macroscopic behaviour, which is primarily governed by the difference in shape, size and nature of the molecules.  相似文献   

12.
In this contribution, we present two new united‐atom force fields (UA‐FFs) for 1‐alkyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide [CnMIM][NTf2] (n=1, 2, 4, 6, 8) ionic liquids (ILs). One is parametrized manually, and the other is developed with the gradient‐based optimization workflow (GROW). By doing so, we wanted to perform a hard test to determine how researchers could benefit from semiautomated optimization procedures. As with our already published all‐atom force field (AA‐FF) for [CnMIM][NTf2] (T. Köddermann, D. Paschek, R. Ludwig, ChemPhysChem­ 2007, 8, 2464 ), the new force fields were derived to fit experimental densities, self‐diffusion coefficients, and NMR rotational correlation times for the IL cation and for water molecules dissolved in [C2MIM][NTf2]. In the manual force field, the alkyl chains of the cation and the CF3 groups of the anion were treated as united atoms. In the GROW force field, only the alkyl chains of the cation were united. All other parts of the structures of the ions remained unchanged to prevent any loss of physical information. Structural, dynamic, and thermodynamic properties such as viscosity, cation rotational correlation times, and heats of vaporization calculated with the new force fields were compared with values simulated with the previous AA‐FF and the experimental data. All simulated properties were in excellent agreement with the experimental values. Altogether, the UA‐FFs are slightly superior for speed‐up reasons. The UA‐FF speeds up the simulation by about 100 % and reduces the demanded disk space by about 78 %. More importantly, real time and efforts to generate force fields could be significantly reduced by utilizing GROW. The real time for the GROW parametrization in this work was 2 months. Manual parametrization, in contrast, may take up to 12 months, and this is, therefore, a significant increase in speed, though it is difficult to estimate the duration of manual parametrization.  相似文献   

13.
考察了1-烷基-3-甲基咪唑类离子液体对柱状假丝酵母脂肪酶(CRL)催化橄榄油水解反应活性的影响,利用电导法确定了磷酸盐缓冲液中Br-,Cl-,[BF4]-系列咪唑离子液体的临界胶束浓度(CMC)和[PF6]-系列咪唑离子液体的溶解度.结果显示,离子液体的阴、阳离子对酶活性的影响规律与离子液体的Kosmotropicity性质无明显关联,但与离子液体在体系中的含量密切相关,在最适离子液体含量时,酶活性达到最高;阳离子[CnMIM]+中的n越大,可促进酶活性的离子液体适宜含量越低;Br-,[BF4]-系列离子液体的浓度超过CMC时则抑制酶活;阴离子对酶活性的最大促进作用顺序为Br->Cl->[BF4]->[PF6]-.离子液体对酶活性的影响随体系pH和温度的不同而改变,在最适离子液体浓度时的最适pH均为7.000.在pH 7.000,30 oC以及[C8MIM]Br离子液体浓度为47.6 mmol/L的最佳条件下,最高相对酶活力和比活力分别达到1734%和54.4 U/mg protein.  相似文献   

14.
Song and Mason equation of state (EOS) with a simple modification has been extended to modelling PVT properties of ionic liquids (ILs). The considered ILs are [C1mim][MeSO4], [C1mim][CH3OC2H5SO4], [C1mim][(CH3)2PO4], [C2mim][MeSO4], [C2mim][BF4], [C2mim][SCN], [C2eim][NTf2], [C4mim][C(CN)3], [C4mim][CF3SO3], [C4mim][SCN], [C5mim][NTf2], [C8mim][NTf2], [(C6H13)3P(C14H29)][Cl], [(C6H13)3P(C14H29)][NTf2], [(C6H13)3P(C14H29)][Ac], [C3mpyr][NTf2], [C4mpyr][NTf2] and [Py][C2H5OC2H4SO4]. Three temperature-dependent parameters in the proposed EOS have been scaled as functions of reduced temperature with the use of the law of corresponding states. It is shown that the knowledge of just critical temperature and critical density is sufficient to predict the PVT properties of these ILs. The overall average absolute deviation of calculated densities from literature values for 1347 data points of 18 ILs was found to be 0.58%. The predicted density of ILs from proposed EOS has been compared with those obtained by other literature work. Moreover, we indicate that the Zeno line regularity can well be predicted by proposed model for ILs.  相似文献   

15.
Absalan G  Akhond M  Sheikhian L 《Talanta》2008,77(1):407-411
In this paper, imidazolium-based ionic liquids [C4mim][PF6], [C6mim][PF6], [C8mim][PF6], [C6mim][BF4] and [C8mim][BF4] were tested as extracting solvents for removal of 3-indole butyric acid (IBA) from aqueous media with subsequent determination using HPLC. Percent extraction of IBA was strongly affected by pH of aqueous phases and the chemical structures of ionic liquids (ILs). Extraction of IBA was quantitative in the pH values lower than pKa of IBA. Considering both extraction and stripping efficiencies of IBA, [C4mim][PF6] was found to act more efficient than other studied ILs. Capacity of [C4mim][PF6] was 17.6 × 10−4 mmol IBA per 1.0 mL of IL. Ionic strength of aqueous phase and temperature had shown no serious effects on extraction efficiency of IBA. A preconcentration factor of 100 and a relative standard deviation of 1.16% were obtained. It was found that ionic liquid phase was reusable almost five times for extraction/stripping purposes. 3-Indole acetic acid showed interferential effect in the extraction step. In order to assess the applicability of the method, extraction and stripping of IBA from pea plants and some other samples were studied.  相似文献   

16.
The density, viscosity and conductivity of ionic liquids (ILs), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]), 1-octyl-3-methylimidazolium chloride ([omim][Cl]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim] BF4]), 1-hexyl- 3-methylimidazolium chloride ([hmim][Cl]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), and the [omim][BF4] + [omim][Cl], [hmim][BF4] + [hmim][Cl], and [hmim][PF6] + [hmim][Cl] binary mixtures were studied at dif- ferent temperatures. It was demonstrated that the densities of both the neat ILs and their mixtures varied linearly with temper- ature. The density sensitivity of a binary mixture is between those of the two components. The excess molar volumes (VE) of [hmim][BF4] + [hmim][Cl] and [hmim][PF6] + [hmim][Cl] mixtures are positive in the whole composition range. For [omim][BF4] + [omim][Cl], the VE is also positive in the [omim][Cl]-rich region, but is negative in the [omim][BF4]-rich re- gion. The viscosity or conductivity of a mixture is in the intermediate of those of the two neat ILs. For all the neat ILs and the binary mixtures studied, the order of conductivity is opposite to that of the viscosity. The Vogel-Tammann-Fulcher (VTF) equations can be used to fit the viscosity and conductivity of all the neat ILs and the binary mixtures. The neat ILs and their mixtures obey the Fractional Walden Rule very well, and the values of the Walden slopes are all smaller than unit, indicating obvious ion associations in the neat ILs and the binary mixtures.  相似文献   

17.
Vapor‐phase polymerization (VPP) is an important method for the fabrication of high‐quality conducting polymers, especially poly(3,4‐ethylenedioxythiophene) (PEDOT). In this work, the effects of additives and post‐treatment solvents on the thermoelectric (TE) performance of VPP‐PEDOT films were systematically investigated. The use of 1‐butyl‐3‐menthylinidazolium tetrafluoroborate ([BMIm][BF4], an ionic liquid) was shown to significantly enhance the electrical conductivity of VPP‐PEDOT films compared with other additives. The VPP‐PEDOT film post‐treated with mixed ethylene glycol (EG)/[BMIm][BF4] solvent displayed the high power factor of 45.3 μW m?1 K?2 which is 122% higher than that prepared without any additive or post‐treatment solvent, along with enhanced electrical conductivity and Seebeck coefficient. This work highlighted the superior effect of the [BMIm][BF4] additive and the EG/[BMIm][BF4] solvent post‐treatment on the TE performance of the VPP‐PEDOT film. These results should help with developing the VPP method to fabricate high‐performance PEDOT films. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1738–1744  相似文献   

18.
Several imidazolium-based ionic liquids (ILs) with varying cation alkyl chain length (C4–C10) and anion type (tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]) and bis(trifluoromethylsulfonyl)imide ([Tf2N])) were used as reaction media in the microwave polymerization of methacrylate-based stationary phases. Scanning electron micrographs and backpressures of poly(butyl methacrylate-ethylene dimethacrylate) (poly(BMA-EDMA)) monoliths synthesized in the presence of these ionic liquids demonstrated that porosity and permeability decreased when cation alkyl chain length and anion hydrophobicity were increased. Performance of these monoliths was assessed for their ability to separate parabens by capillary electrochromatography (CEC). Intra-batch precision (n = 3 columns) for retention time and peak area ranged was 0.80–1.13% and 3.71–4.58%, respectively. In addition, a good repeatability of RSDRetention time = <0.30% and ∼1.0%, RSDPeak area = <1.30% and <4.3%, and RSDEfficiency = <0.6% and <11.5% for intra-day and inter-day, respectively exemplify monolith performance reliability for poly(BMA-EDMA) fabricated using 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) porogen. This monolith was also tested for its potential in nanoLC to separate protein digests in gradient mode. ILs as porogens also fabricated different alkyl methacrylate (AMA) (C4–C18) monoliths. Furthermore, employing binary IL porogen mixture such as 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]) successfully decreased the denseness of the monolith, than when using [C4mim][Tf2N] IL alone, enabling a chromatographic run to be performed with 1:1 ratio produced baseline separation for the analytes. The combination of ILs and microwave irradiation made polymer synthesis very fast (∼10 min), entirely green (organic solvent-free) and energy saving process.  相似文献   

19.
Conventional free‐radical copolymerization of acrylonitrile (AN) and styrene (St) was realized in room temperature ionic liquids (RTILs), 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim][BF4]) and 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([Bmim][PF6]), under mild conditions. The copolymerization in RTILs was more rapid than that in traditional solvent DMF. Poly(styrene‐co‐acrylonitrile) (SAN) prepared in RTILs had higher molecular weight than that prepared in DMF or by bulk copolymerization. SAN with bimodal molecular weight distribution (MWD) were obtained in most of the reaction conditions in [Bmim][BF4] and some conditions in [Bmim][PF6]. By the analysis of reaction phenomena and fluorescence behavior, the reason of the difference in MWD could be attributed to the difference of reaction system compatibility mainly caused by the immiscibility of macromolecule with RTIL. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4420–4427, 2006  相似文献   

20.
The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号