首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption of weak polyelectrolytes impacts on properties such as ionization, conformations, and counterion (CI) condensation that are important in several areas of applied and fundamental science. We used a weak polyelectrolyte model and Monte Carlo simulations to investigate how the mentioned properties depend on pH or the size of a spherical cavity (SC) permeable to CIs but not to polyelectrolytes; the latter have either linear or starlike topologies and may be allowed to form charged hydrogen bonds (c? H‐bonds) between ionized and neutral monomers. Average ionization decreases upon increasing the number of arms at a constant number of monomers; it instead increases with the arm length in large SC due to CI screening. The way SC size, c? H‐bonds, and pH values interrelate to define ionization is instead more complicate due to arm pairing or clustering when c? H‐bonds are possible. These induce oscillations in the arm local ionization and impact on both monomer and CI distributions in the complete simulation cell in a way that also depends on polymer topology. The impact of ionization on the confinement free energy is also estimated; this highlighted that c? H‐bonding may enhance absorption compared with neutral chains. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 491–510  相似文献   

2.
Low‐lying excited states of planarly extended nanographenes are investigated using the long‐range corrected (LC) density functional theory (DFT) and the spin‐flip (SF) time‐dependent density functional theory (TDDFT) by exploring the long‐range exchange and double‐excitation correlation effects on the excitation energies, band gaps, and exciton binding energies. Optimizing the geometries of the nanographenes indicates that the long‐range exchange interaction significantly improves the C C bond lengths and amplify their bond length alternations with overall shortening the bond lengths. The calculated TDDFT excitation energies show that long‐range exchange interaction is crucial to provide accurate excitation energies of small nanographenes and dominate the exciton binding energies in the excited states of nanographenes. It is, however, also found that the present long‐range correction may cause the overestimation of the excitation energy for the infinitely wide graphene due to the discrepancy between the calculated band gaps and vertical ionization potential (IP) minus electron affinity (EA) values. Contrasting to the long‐range exchange effects, the SF‐TDDFT calculations show that the double‐excitation correlation effects are negligible in the low‐lying excitations of nanographenes, although this effect is large in the lowest excitation of benzene molecule. It is, therefore, concluded that long‐range exchange interactions should be incorporated in TDDFT calculations to quantitatively investigate the excited states of graphenes, although TDDFT using a present LC functional may provide a considerable excitation energy for the infinitely wide graphene mainly due to the discrepancy between the calculated band gaps and IP–EA values. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
We studied conformational transition of poly(acrylic acid)‐graft‐dodecyl (PAA‐g‐dodecyl), and PAA‐graft‐poly(ethylene oxide)‐graft‐dodecyl (PAA‐g‐PEO‐g‐dodecyl) molecules in DMF/H2O solvent by dielectric analysis method utilizing a double‐layer polarization theory. In addition to the hydrophobic interaction which has been demonstrated to be vital for their conformational transition with water content, it is confirmed that the electrostatic interaction is crucial. For PAA‐g‐dodecyl molecules, at a critical value of water content, a peak value of correlation length is reached originating from the delicate balance between electrostatic and hydrophobic interactions. For PAA‐g‐PEO‐g‐dodecyl molecules, chains conformation is mainly determined by electrostatic interaction over the entire range of water content due to the low content of dodecyl groups. Meanwhile, H‐bond associative interaction prevents the dissociation of free carboxyl groups over the range of lower water content, thus their stretched transition moves to higher water content. Our results provide the underlying insights needed to understand solvent effect on the conformational transition for polyelectrolytes with hydrophobic groups. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1716–1724  相似文献   

4.
In a previous article, we presented a simple modification of the traditional Flory–Huggins theory that took intramolecular screening effects (or same chain contacts) into account. In this article, we present a natural extension of that work, in which free‐volume effects are also explained with an equation‐of‐state model. The predictions of the interaction parameter, χ, for several polymer–solvent systems are presented, over the entire concentration range, in θ solvents and good solvents. A geometric mean assumption is applied to the calculation of an exchange energy interaction term. The predictions of χ are successful to various degrees when internal pressures are used, whereas the use of solubility parameters in most cases produces fairly good agreement with experimental results. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2911–2922, 2003  相似文献   

5.
The effect of long‐range Coulomb interactions on bulk properties is studied for the ionic solids NaBr and NaCl. The embedded cluster approach in the framework of density functional theory is employed. The Madelung potential is calculated with the Evjen cube summation method. To explore the effects of the long‐range interactions on the electron densities and the Madelung constant, the Evjen cube size is varied from 310 to 19650 point charges for 33 atom clusters. To study the size effect of the quantum region, all‐electron clusters with 33 to 87 atoms, embedded in Evjen cubes of 6859 point charges, are investigated. The results show that for the 81 and 87 atom clusters the Madelung potential is constant from the center up to the second neighbor shell. For the same atoms, in all clusters, the electron density at the nuclei has nearly the same value. The largest difference found for the positive ions was 0.54%, and for the negative ions, 0.14%. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

6.
For weak polyelectrolytes, the interplay between pH, solvent properties, and polymer structure affects the amount of charges, their distribution, and hence their conformations via Coloumb repulsion. Attractive interactions can also develop between charged and neutral sites counteracting the expected Coulomb‐induced expansion. To gauge how such competition affects polyelectrolyte structure and ionization, the titration of a single polyelectrolyte chain, isolated or close to a charged sphere, mimicked with a novel many‐body potential model is simulated with Monte Carlo. Apart from showing a 10‐fold higher ionization than isolated monomers at low pH, interacting species contracted forming short‐range clusters of charged and neutral ionizable groups. The presence of a charged sphere synergically boosted both effects due to monomer interactions, forcing the chains to condense onto its surface at much lower pH. Structural properties, however, seem to be controlled only by the ionization degree despite the presence of the topological restraint represented by the spherical surface. Using Monte Carlo titration results, the equilibrium ionization of isolated chains is also estimated; the results evidence that even weak interactions can easily lead to a doubling of the total charge. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 650–663  相似文献   

7.
Density functional theory, in general, is considered to underestimate the weak van der Waals type of intermolecular interactions. We optimized parameters of the local response dispersion (LRD) method applied to the long‐range corrected exchange‐correlation functionals (LC‐BOP12+LRD and LCgau‐BOP+LRD) on the interaction energy for the complexes in the recently compiled S66 database and found to be comparable with the high‐level wave function‐based methods reported in ?ezá? et al. (J. Chem. Theory Comput. 2011 , 7, 2427). Our calculations with the S66 intermolecular complexes at equilibrium geometries suggests that the LC‐BOP12+LRD and LCgau‐BOP+LRD are well‐balanced and lower cost alternatives to the methods reported in the database. Further, test on the S66X8 database (with eight nonequilibrium points) and the HBC6 and NBC10 database shows LC+LRD method with newly optimized parameters is a promising candidate for dealing such weak interactions. Finally, the new parameterized LC+LRD method was tested on X40 benchmark halogenated complexes.Copyright © 2013 Wiley Periodicals, Inc.  相似文献   

8.
A study on a diblock copolymer melt that can form certain specific interactions between dissimilar monomers is performed first with a mean‐field approach and then with a fluctuation correction approach. Flory's interaction parameter χ possesses both enthalpic and entropic contributions because of the specific interactions. It is found that not only a lower critical ordering transition but also an immiscibility loop with an upper critical ordering transition can be developed in the copolymer by the presence of the specific interactions and the entropic component in χ. The mean‐field loop phase diagram is shown to feature a typical sequence of microphase transitions upon both heating and cooling with two continuous transition points at a symmetric composition. It is revealed that the fluctuation effects remove both continuous transition points to significantly shrink the loop. The pressure effects on the phase behavior of the copolymer are also discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1889–1896, 2003  相似文献   

9.
Decomposition of the Coulomb electron–electron interaction into a long‐range and a short‐range part is described within the framework of density functional theory, deriving some scaling relations and the corresponding virial theorem. We study the behavior of the local density approximation in the high‐density limit for the long‐range and the short‐range functionals by carrying out a detailed analysis of the correlation energy of a uniform electron gas interacting via a long‐range‐only electron–electron repulsion. Possible definitions of exchange and correlation energy densities are discussed and clarified with some examples. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

10.
The difference between the excitation energies and corresponding orbital energy gaps, the exciton binding energy, is investigated based on time‐dependent (TD) density functional theory (DFT) for long‐chain systems: all‐trans polyacetylenes and linear oligoacenes. The optimized geometries of these systems indicate that bond length alternations significantly depend on long‐range exchange interactions. In TDDFT formalism, the exciton binding energy comes from the two‐electron interactions between occupied and unoccupied orbitals through the Coulomb‐exchange‐correlation integral kernels. TDDFT calculations show that the exciton binding energy is significant when long‐range exchange interactions are involved. Spin‐flip (SF) TDDFT calculations are then carried out to clarify double‐excitation effects in these excitation energies. The calculated SF‐TDDFT results indicate that double‐excitation effects significantly contribute to the excitations of long‐chain systems. The discrepancies between the vertical ionization potential minus electron affinity (IP–EA) values and the HOMO–LUMO excitation energies are also evaluated for the infinitely long polyacetylene and oligoacene using the least‐square fits to estimate the exciton binding energy of infinitely long systems. It is found that long‐range exchange interactions are required to give the exciton binding energy of the infinitely long systems. Consequently, it is concluded that long‐range exchange interactions neglected in many DFT calculations play a crucial role in the exciton binding energies of long‐chain systems, while double‐excitation correlation effects are also significant to hold the energy balance of the excitations. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Cationic polyelectrolytes were synthesized and used as semipermanent coating materials for capillaries in electrophoresis. The polyelectrolytes used were a homopolymer of poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its poly(ethylene glycol) (PEG)‐grafted analogue. Two PMOTAC polyelectrolytes, with molar masses of 85,000 and 300,000 g/mol, and PEG‐grafted PMOTAC with a molar mass of 280,000 g/mol were synthesized and then characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Attachment of the polyelectrolytes to the wall of the fused silica capillary for electrophoresis caused the electroosmotic flow (EOF) to reverse. The polyelectrolyte coatings were tested over the pH range 2–11 at different buffer ionic strengths, and the most stable and strongest anodic EOFs were obtained at acidic pH values with low ionic strength buffers. Between runs the capillary is merely rinsed for 2 or 3 min with the background electrolyte solution. With the PMOTAC coatings at pH values ≤5, the RSDs of the EOFs were less than 2.9% after 60 injections. The effects of the molar mass of the polycation and of PEGylation of PMOTAC on the interactions between the polycations and basic proteins were studied at acidic pH values. The differences in the effective electrophoretic mobilities, resolution values, and plate numbers of the proteins with the different coatings were due to the EOF, as demonstrated through calculations of reduced mobilities, relative resolution values, and relative plate numbers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2655–2663, 2007  相似文献   

12.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

13.
Benchmark quality geometries and interaction energies for the prereactive halogen‐bonded complexes of dihalogens and ammonia, including hypothetical astatine containing dihalogens, have been produced via explicitly correlated coupled cluster methods. The application of local electron correlation partitioning reveals dispersion, electrostatics and ionic substitutions all contribute significantly to the interaction energy, with a linear relationship between the ionic substitutions and the degree of charge transfer. Potential energy curves for H3N???ClF show that as the relative orientations of the two subunits are manipulated appreciable interactions can be found at considerably angular displaced geometries, signifying lower directionality in halogen bonding than previously supposed.  相似文献   

14.
The computation of intermolecular interaction energies via commonly used density functionals is hindered by their inaccurate inclusion of medium and long range dispersion interactions. Practical computation of inter- and intra-macrobiomolecule interaction energies, in particular, requires a fairly accurate yet not overly expensive methodology. It is also desirable to compute intermolecular energies not only at their equilibrium (lowest energy) configurations but also over a range of biophysically relevant distances. We present a method to compute intermolecular interaction energies by including an empirical correction for dispersion which is valid over a range of intermolecular distances. This is achieved by optimizing parameters that moderate the empirical correction by explicit comparison of density functional (B3LYP) energies with distance-dependent (DD) reference values obtained at the CCSD(T)/CBS limit. The resulting method, hereafter referred to as B3LYP-DD, yields interaction energies with an accuracy generally better than 1 kcal mol(-1) for different types of noncovalent complexes, over a range of intermolecular distances and interaction strengths, relative to the expensive CCSD(T)/CBS standard. For a training set of dispersion interacting complexes, B3LYP-DD interaction energies in combination with diffuse functions display absolute errors equal to or smaller than 0.68 kcal mol(-1). The empirical correction does not significantly increase the computational cost as compared to standard density functional calculations. Applications relevant to biomolecular energy and structure, such as prediction of DNA base-pair interactions, are also presented.  相似文献   

15.
The phase behavior of poly(N‐tertbutylacrylamide‐co‐acrylamide) (PNTBAM) in pure water and mixture of water–methanol is studied at different temperatures. The different compositions of PNTBAM are prepared by free‐radical polymerization technique and their phase behavior is studied by turbidimetry. The effects of copolymer and solvent composition on the phase behavior of the copolymers are discussed. It has been suggested that the inhomogenities in polymer chains are responsible for lowering the rate of phase transition by increasing the N‐tertbutylacrylamide (NTBAM) and methanol contents in copolymer and mixture, respectively. For the first time we have revealed that there are second‐order binary interactions in the water–methanol which are dominant in the special range of copolymer composition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 455–462, 2009  相似文献   

16.
Changes in the free‐volume parameters of polyacrylamide (PAAm) gels during the volume phase transition (VPT) were studied with the positron annihilation lifetime technique. The VPT was induced through the variation of the solvent composition in a mixture of acetone and water. The PAAm gels containing 0 and 4 mol % carboxyl groups in their polymer chains were adapted to compare the effect of the presence of ionic groups on the microscopic environment. The change of the free‐volume property is discussed on a nanoscopic scale, with attention paid to the interactions between the polymer chains and the solvent molecules. It is proven that the variations of the free‐volume parameters correlate significantly with the VPT phenomenon. The results of the free volume for both gels are well‐explained when an interaction parameter, εg, is assumed. The interpretation suggests that the state of the interactions among the components (the polymer chain, acetone, and water molecules) plays an important role in the change of the free volume of PAAm gels during the VPT. An increase of the dispersion of the free‐volume size near the VPT point was observed for the ionized PAAm gel. The broadened size distribution of the free volume of the ionized PAAm gel around the VPT point lay between those of pure water and the corresponding mixed solvent, suggesting that a local minimum of the average free‐volume size at the VPT point is caused by the increase of a specific interaction, hydrogen bonding. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 922–933, 2000  相似文献   

17.
Purely ionic interactions in natural and synthetic macromolecules involve the mutual interaction of fixed charges and their interaction with mobile ions. Such charge‐dependent interactions lead to well‐documented effects, including chain expansion of polyelectrolytes, globularization of polyampholytes, distributions of mobile ions according to charge screening, or ion condensation models. A variety of structural features, functions, and applications of these systems is amplified by the superimposition of charge‐independent effects associated with the occurrence of less polar or hydrophobic groups, special salts, surfactants, or complementary protein assemblies. For instance, ionic and hydrophobic attractive interactions stabilize pearls (or rings)‐on‐a‐string conformations, possibly a model for the formation of the chromatin assembly. The attractive interactions due to hydrophobic fatty acid groups attached to polysaccharides promote the formation of vesicles that entrap and slowly release water‐soluble drugs. Intra‐ and intermolecular associations based on ion‐pairing mixed interactions also control the formation of host–guest compounds, protein conformation, and the assembly of layered polyelectrolytes. Metallo‐supramolecular polymers and networks are formed due to the coordination of multivalent cations with bi‐ and trifunctional organic ligands. The association of lithium salts to polymers in the absence of water allows the formation of highly efficient energy sources. It also allows the identification of the ionic species that control charge‐independent contributions to Hofmeister effects. This critical review presents a synthetic classification of systems displaying ionic mixed interactions, and a discussion of underlying molecular mechanisms.  相似文献   

18.
Poly(N‐acryloyl‐N′‐methylpiperazine) (PAMP) forms complexes with four strong acidic polymers, namely, poly(styrenesulfonic acid), poly(vinylphosphonic acid), poly(acrylic acid) and poly(methacrylic acid) in ethanol/water (1:1) solution. The nature of interpolymer interactions in various complexes was studied by Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). Both the carbonyl oxygen and the amide nitrogen of PAMP are involved in hydrogen‐bonding interactions. Some of the amine nitrogens of PAMP are protonated and therefore PAMP also interacts with the acidic polymers through ionic interactions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 501–508, 2000  相似文献   

19.
The possibility of quantitative reaction analysis on the orbital energies of long‐range corrected density functional theory (LC‐DFT) is presented. First, we calculated the Diels–Alder reaction enthalpies that have been poorly given by conventional functionals including B3LYP functional. As a result, it is found that the long‐range correction drastically improves the reaction enthalpies. The barrier height energies were also computed for these reactions. Consequently, we found that dispersion correlation correction is also crucial to give accurate barrier height energies. It is, therefore, concluded that both long‐range exchange interactions and dispersion correlations are essentially required in conventional functionals to investigate Diels–Alder reactions quantitatively. After confirming that LC‐DFT accurately reproduces the orbital energies of the reactant and product molecules of the Diels–Alder reactions, the global hardness responses, the halves of highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) energy gaps, along the intrinsic reaction coordinates of two Diels–Alder reactions were computed. We noticed that LC‐DFT results satisfy the maximum hardness rule for overall reaction paths while conventional functionals violate this rule on the reaction pathways. Furthermore, our results also show that the HOMO‐LUMO gap variations are close to the reaction enthalpies for these Diels–Alder reactions. Based on these results, we foresee quantitative reaction analysis on the orbital energies. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
A selective review of the question of how repulsive electron correlations might give rise to off‐diagonal long‐range order (ODLRO) in high‐temperature superconductors is presented. The article makes detailed explanations of the relevance to superconductivity of reduced electronic density matrices and how these can be used to understand whether ODLRO might arise from Coulombic repulsions in strongly correlated electronic systems. Time‐reversed electron pairs on alternant Cuprate and the iron‐based pnictide and chalcogenide lattices may have a weak long‐range attractive tail and much stronger short‐range repulsive Coulomb interaction. The long‐range attractive tail may find its origin in one of the many suggested proposals for high‐Tc superconductivity and thus has an uncertain origin. A phenomenological Hamiltonian is invoked whose model parameters are obtained by fitting to experimental data. A detailed summary is given of the arguments that such interacting electrons can cooperate to produce a superconducting state in which time‐reversed pairs of electrons effectively avoid the repulsive hard‐core of the Coulomb interaction but reside on average in the attractive well of the long‐range potential. Thus, the pairing of electrons itself provides an enhanced screening mechanism. The alternant lattice structure is the key to achieving robust high‐temperature superconductivity with dx2‐y2 or sign alternating s‐wave or s± condensate symmetries in cuprates and iron‐based compounds. Some attention is also given to the question first raised by Leggett as to where the Coulombic energy is saved in the superconducting transition in cuprates. A mean‐field‐type model in which the condensate density serves as an order parameter is discussed. Many of the observed trends in the thermal properties of cuprate superconductors are reproduced giving strong support for the proposed model for high‐temperature superconductivity in such strongly correlated electronic systems. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号