首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
In order to enhance dielectric properties and energy storage density of poly(vinylidene fluoride‐hexafluoro propylene) (PVDF‐HFP), surface charged gas‐phase Al2O3 nanoparticles (GP‐Al2O3, with positive surface charges, ε’ ≈ 10) are selected as fillers to fabricate PVDF‐HFP‐based composites via simple physical blending and hot‐molding techniques. The results show that GP‐Al2O3 are dispersed homogeneously in the PVDF‐HFP matrix and the existence of nanoscale interface layer (matrix‐filler) is investigated by SAXS. The dielectric constant of the composites filled with 10 wt % GP‐Al2O3 is 100.5 at 1 Hz, which is 5.6 times higher than that of pure PVDF‐HFP. The maximum energy storage density of the composite is 4.06 J cm?3 at an electrical field of 900 kV mm?1 with GP‐Al2O3 content of 1 wt %. Experimental results show that GP‐Al2O3 could induce uniform fillers’ distribution and increase the concentration of electroactive β‐phase as well as enhance interfacial polarization in the matrix, which resulted in enhancements of dielectric constant and energy storage density of the PVDF‐HFP composites. This work demonstrates that surface charged inorganic‐oxide nanoparticles exhibit promising potential in fabricating ferroelectric polymer composites with relatively high dielectric constant and energy storage. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 574–583  相似文献   

2.
Unique three‐component multilayer films with ATBTATBTA configuration were fabricated using forced assembly multilayer coextrusion for novel dielectric systems. The dielectric breakdown strength, displacement–electric field hysteresis, and dielectric spectroscopy of 65‐layer polycarbonate (PC)/tie/poly(vinylidene fluoride‐co‐hexafluoropropylene) (P(VDF‐HFP)) were investigated with various tie materials. Three different tie materials, poly(methyl methacrylate) (PMMA), styrene‐co‐acrylonitrile copolymer with 30% acrylonitrile content (SAN30), and poly(ethylene terephthalate‐co‐1,4‐cycohexanedimethylene terephthalate) (PETG) were chosen owing to their various degrees of interaction with either P(VDF‐HFP) or PC. The 65‐layer PC/PMMA/P(VDF‐HFP) films exhibited a 25% enhancement in breakdown properties, 50% higher energy density, 40% smaller hysteresis loop areas, and orders of magnitude slower ion migration relative to the 33‐layer PC/P(VDF‐HFP) control. These property improvements are mainly attributed to the localized interactions at PMMA/P(VDF‐HFP) and PMMA/PC interfaces, forming interphase regions. The modified PMMA/P(VDF‐HFP) interphase region can effectively hinder the migration of impurity ions in P(VDF‐HFP), reducing their mobility within the layer. Additionally, a small fraction of PMMA can lead to slightly increased dielectric constant of the composite films owing to strong interaction between PMMA and P(VDF‐HFP). The other two systems with PETG and SAN30 as tie layers exhibited marginal improvements in dielectric properties owing to their weaker interactions with the P(VDF‐HFP) layers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 978–991  相似文献   

3.
To improve the dispersion of multi‐walled walled carbon nanotubes (MWCNTs) and investigate the effect of dispersant for MWCNTs functionalization on the dielectric, mechanical, and thermal properties of Polyvinylidene fluoride (PVDF) composites, two different dispersants (Chitosan and TritonX‐100) with different dispersion capability and dielectric properties were used to noncovalently functionalize MWCNTs and prepare PVDF composites via solution blending. Fourier transform infrared, X‐Ray diffraction, and Raman spectroscopy indicated that TritonX‐100 and Chitosan were noncovalent functionalized successfully on the surface of MWCNTs. With the functionalization of Chitosan and TritonX‐100, the dispersion of MWCNTs changed in different extent, which was investigated by dynamic light scattering and confocal laser scan microscopy. The dielectric, mechanical, and thermal properties of PVDF composites were also improved. Meanwhile, it was also found that the dielectric properties of PVDF composites are closely related to the dielectric properties of dispersant. High dielectric constant of dispersant contributes to the grant dielectric constant of PVDF composites. The mechanical and thermal properties of MWCNTs/PVDF composites largely depend on the dispersion of MWCNTs in PVDF, interfacial interactions and the residual solvent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

5.
PFPE‐b‐PVDF and PFPE‐b‐poly(VDF‐co‐HFP) block copolymers [where PFPE, PVDF, VDF, and HFP represent perfluoropolyether, poly(vinylidene fluoride), vinylidene fluoride (or 1,1‐difluoroethylene), and hexafluoropropylene] were synthesized by radical (co)telomerizations of VDF (or VDF and HFP) with an iodine‐terminated perfluoropolyether (PFPE‐I). Di‐tert‐butyl peroxide (DTBP) was used and was shown to act as an efficient thermal initiator. The numbers of VDF and VDF/HFP base units in the block copolymers were assessed with 19F NMR spectroscopy. According to the initial [PFPE‐I]0/[fluoroalkenes]0 and [DTBP]0/[fluoroalkenes]0 molar ratios, fluorinated block copolymers of various molecular weights (1500–30,300) were obtained. The states and thermal properties of these fluorocopolymers were investigated. The compounds containing PVDF blocks with more than 30 VDF units were crystalline, whereas all those containing poly(VDF‐co‐HFP) blocks exhibited amorphous states, whatever the numbers were of the fluorinated base units. All the samples showed negative glass‐transition temperatures higher than that of the starting PFPE. Interestingly, these PFPE‐b‐PVDF and PFPE‐b‐poly(VDF‐co‐HFP) block copolymers exhibited good thermostability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 160–171, 2003  相似文献   

6.
Core–shell carboxyl‐functionalized multiwall carbon nanotube (c‐MWCNT)/poly(m‐aminophenol) (PmAP) nanocomposite were prepared through in‐situ polymerization of m‐aminophenol (m‐AP) in the presence of MWCNTs, and explicated as a dielectric material for electronic applications. The formation of thin PmAP layer on individual c‐MWCNT with excellent molecular level interactions at interfaces was confirmed by morphological and spectroscopic analyses. Here we conducted a comparative study of the dielectric performances of PmAP based nanocomposite films with pristine MWCNTs and c‐MWCNTs as fillers. Compared to PmAP/MWCNT nanocomposites, the PmAP/c‐MWCNT nanocomposites exhibited higher dielectric permittivity and lower dielectric loss. The well dispersed c‐MWCNTs in PmAP/c‐MWCNT nanocomposite produce huge interfacial area together with numerous active polarized centers (crystallographic defects), which in turn intensified the Maxwell‐Wagner‐Sillars (MWS) effect based on excellent molecular level interactions and thus, produce large dielectric permittivity (8810 at 1 kHz). The percolation threshold of PmAP/c‐MWCNT nanocomposites is found lower than that of the PmAP/MWCNT nanocomposites, which could be attributed to homogeneous distribution of c‐MWCNTs and strong c‐MWCNT//PmAP interfacial interactions in the nanocomposites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The thermoresponsive conductive composite (TCC) thin films and fiber mats, whose electrical property changed with temperature, were fabricated successfully. The thermocrosslinkable and thermoresponsive copolymer, poly(N‐isopropyl acrylamide‐coN‐methylolacrylamide) (PNN), was synthesized. The TCC thin film and fiber mat were fabricated by spin coating and electrospinning process of PEDOT:PSS/PNN solutions, respectively. After thermocrosslinking and doping by DMSO, the composite thin films and fiber mats were obtained. Fibrous structures of TCC fiber mats were observed by SEM. The surface resistance and conductivity of composites were measured. The thermoresponsivity and swelling ratio of TCCs were also studied. The thermoresponsive conductive property was analyzed by measuring the surface resistance of TCCs in water bath under various temperatures from 20 to 50 °C. With the increase of temperature, the TCCs shrank to be dense structure and showed lower surface resistance. The TCC fibers mat exhibited greater sensitivity to temperature than thin film owing to its fibrous structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1078–1087  相似文献   

8.
A novel two‐phase polymer nanocomposite film comprising of polyvinylidene fluoride (PVDF) and nanocrystalline (~90 nm) semiconducting multiferroic BiFeO3 (BFO) have been fabricated by hot‐molding technique. Such flexible thick nanocomposite films, semicrystalline in nature, exhibited extraordinarily high effective dielectric permittivity εeff ~ 103 (compared with that of pure PVDF) near the low percolation threshold (fc = 0.12) at room temperature (RT) and the films also possessed low dielectric loss (~0.18). The polarization‐electric field (P‐E) hysteresis loops are displayed at RT, which indicate ferroelectric like behavior of PVDF still persists in the percolative nanocomposite. There is also large increase of remanent polarization of BFO in the composite indicating improvement of the multiferroic behavior of BFO embedded in the PVDF polymer. The sample also indicates good fatigue endurance. Formation of microcapacitors and percolative behavior are correlated to explain the obtained results based on the special geometry of the BFO nanofillers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

9.
Poly(vinylidene fluoride)(PVDF)/Na+‐MMT composites have been successfully prepared utilizing sodium montmorillonite (Na+‐MMT) via N,N‐dimethylformamide (DMF) solution mixing. The dispersion of Na+‐MMT layers in composites were investigated by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The effect of adding Na+‐MMT on crystallization behavior of PVDF was specifically studied. The β‐crystalline nucleation effect of Na+‐MMT was investigated and confirmed by differential scanning calorimetry (DSC), XRD, and Fourier transform infrared (FTIR) results. The interaction between PVDF and the surface of Na+‐MMT layers in DMF solution was confirmed by UV‐Vis absorbency. The effect of adding Na+‐MMT on rheological and electrical properties of PVDF/Na+‐MMT composites were also determined. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 903–911, 2009  相似文献   

10.
A new compatibilizer, poly(vinyl benzyloxy ethyl naphthalene)‐graft‐poly(methyl methacrylate), for poly(styrene‐co‐acrylonirile) (SAN)/multi‐walled carbon nanotubes (MWCNTs) composites was synthesized. It has been identified that naphthalene unit in backbone of compatibilizer interacts with MWCNTs via π? π interaction and that the PMMA graft of the compatibilizer is miscible with the SAN matrix. When a small amount of compatibilizer was added to SAN/MWCNT composites, MWCNTs were more homogeneously dispersed in SAN matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between SAN and MWCNTs. As a consequence, mechanical and electrical properties of the composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4184–4191, 2010  相似文献   

11.
Here, the confirmation of an oriented nanohybrid shish‐kebab (NHSK) crystalline structure in a series of composites of poly(ethylene terephthalate) (PET) and multiwall carbon nanotubes (MWCNTs) is reported. The combined use of small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) and thermal analysis has been used to investigate the morphology development in PET‐MWCNT nanocomposites under hot isothermal crystallization conditions. The MWCNTs act as both heterogeneous nucleating agents and surfaces (oriented shish structures) for the epitaxial growth of PET crystallites (kebabs) giving an oriented crystalline morphology. In contrast, the PET homopolymer does not show any residual oriented crystalline morphology during isothermal crystallization but gave a sporadic nucleation of a classic unoriented lamellar structure with slower crystallization kinetics. The results provide a valuable insight into the role of MWCNTs as nanoparticulate fillers in the morphology development and subsequent modification of physical properties in engineering polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 132–137  相似文献   

12.
Polymer‐based nanocomposites with good dielectric behavior have engrossed research devotion because of their distinctive benefits in electronic applications. An in situ synthetic process for the polybenzimidazole functionalized graphene oxide (GBI) and its nanocomposite with poly(vinylidene fluoride) (PVDF) is described. GBI shows good dispersion in the bulk PVDF matrix implying a strong interaction of polybenzimidazole with PVDF as evident from morphological and FTIR studies. A gradual increment of GBI in PVDF increases its piezoelectric β‐polymorph formation with a maximum of 73% for 10 wt % GBI in PVDF (GBF10) which also exhibits highest thermal stability. An exhaustive study of frequency dependent electrical properties of GBF10 indicates significantly higher dielectric constant (61), low dielectric loss (0.42), and low AC conductivity value of 1.17 × 10?10 S/cm at 100 Hz which are the key properties of a suitable capacitor. GBF10 also shows hydrophobic behavior (water uptake 2.89%) and low swelling ratio (1.143), providing an opportunity to use the composite film in fuel cell application. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 189–201  相似文献   

13.
A novel polyelectrolyte‐grafted multiwalled carbon nanotubes (MWCNTs‐g‐PILs) which possesses a hard backbone of MWCNTs and a soft shell of brush‐like poly (ionic liquids) (PILs) has been synthesized via the surface atom transfer radical polymerization (ATRP). Chemical structure and the grafted PILs quantities of MWCNTs‐g‐PILs were determined by FTIR, TGA, and XPS. TEM and FE‐SEM observations indicate that the nanotubes were coated with a PILs layer, exhibiting core‐shell nanostructures with the PILs chains as the brush‐like or hairy shell and the MWCNTs as the hard backbone. Furthermore, the effect of counter‐anions on the solubility of MWCNTs‐g‐PILs was investigated. The results indicate that relative solubility of MWCNTs‐g‐PILs in various solvents could be switched by anion exchange. This tunable solubility results in the formation of the cycle of reversible phase‐transition. Tribological property of MWCNTs‐g‐PILs as additives in base lubricant 1‐methyl‐3‐butylimidaaolium hexafluorophosphate (LP104) was evaluated using an Optimol SRV oscillating friction and wear tester, confirming that MWCNTs‐g‐PILs are the excellent antiwear and friction‐reducing additives, which can amend the tribological properties of base lubricant significantly. This is attributed to the good dispersibility and core‐shell structure of MWCNTs‐g‐PILs. These results reported in this work may open primarily toward constructing a bridge among carbon nanotues (CNTs), ILs, and lubricant additives and secondarily to prove that CNTs (modified CNTs) as lubricant additives are promising candidates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7225–7237, 2008  相似文献   

14.
Polyimide (PI)‐based nanocomposites containing aminophenyl functionalized multiwalled carbon nanotubes (AP‐MWCNTs) obtained through a diazonium salt reaction was successfully prepared by in situ polymerization. PI composites with different loadings of AP‐MWCNTs were fabricated by the thermal conversion of poly(amic acid) (PAA)/AP‐MWCNTs. The mechanical and electrical properties of the AP‐MWCNTs/PI composites were improved compared with those of pure PI due to the homogeneous dispersion of AP‐MWCNTs and the strong interfacial covalent bonds between AP‐MWNTs and the PI matrix. The conductivity of AP‐MWNTs/PI composites (5:95 w/w) was 9.32 × 10?1 S/cm which was about 1015 times higher than that of Pure PI. The tensile strength and tensile modules of the AP‐MWCNTs/PI composites with 0.5 wt % of AP‐MWCNTs were increased by about 77% (316.9 ± 10.5 MPa) and 25% (8.30 ± 1.10 GPa) compared to those of pure PI, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 960–966  相似文献   

15.
For next generation of miniaturized personal electronics and pulsed power systems for smart power grids, electric vehicles, and electromagnetic launchers, flexible capacitors from dielectric polymers with high‐capacity, high‐efficiency, and fast response are highly desirable. Dielectric polymer composite of P(VDF‐CTFE), that is poly(vinylidene fluoride‐chlorotrifluoroethylene) and a small amount of aromatic polythiourea (PTU) has been described. It combines the merits of both polymers, that is high dipole density and easy processability of P(VDF‐CTFE), as well as large dipole moment and high charge–discharge efficiency of PTU. Most impressively, PTU boosts the maximum breakdown strength of P(VDF‐CTFE), and thus extracts its maximum energy reserve capacity. PTU also contributes to the promoted charge–discharge efficiency, accelerated discharge, and reduced dielectric loss in P(VDF‐CTFE), which facilitate the composite for flexible capacitor applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 193–199  相似文献   

16.
A gel electrolyte membrane is obtained through the absorption of a carbamate‐modified liquid disiloxane‐containing lithium bis(trifluoromethane)sulfonimide (LiTFSI) by using macroporous poly(vinylidene fluoride–hexafluoropropylene) (PVDF‐HFP) membranes. The porous membranes are prepared by means of a phase inversion technique. The resulting gel electrolyte membrane is studied by using differential scanning calorimetry, Fourier‐transform infrared (FTIR) spectroscopy, and microscope mapping through coherent anti‐Stokes Raman scattering (CARS) confocal microscopy and impedance spectroscopy. The ionic conductivity of the gel electrolyte is 10?4 S cm?1 at 20 °C. FTIR spectroscopy reveals interactions between LiTFSI and the carbonyl moiety of the disiloxane. No interactions between LiTFSI and PVDF‐HFP or between disiloxane and PVDF‐HFP are detected by FTIR spectroscopy. Furthermore, the distribution of the α and β/γ phases of PVDF‐HFP and the homogeneous distribution of disiloxane/LiTFSI in the gel electrolyte membranes are examined by FTIR mapping. CARS confocal microscopy is used to image the three‐dimensional interconnectivity, which reveals a reticulated structure of macrovoids in the porous PVDF‐HFP framework. Owing to properties such as electrochemical and thermal stability of the disiloxane‐based liquid electrolyte and the mechanical stability of the porous PVDF‐HFP membrane, the gel electrolyte membranes presented herein are promising candidates for applications as electrolytes/separators in lithium‐ion batteries.  相似文献   

17.
Polymer dielectrics generally have comparatively low dielectric constant, operating temperatures, and/or high dielectric loss, which limits their uses especially in harsh environment. In this article, a novel trilayered nanocomposite film (TNF) was constructed via solution‐casting and, subsequently, hot‐pressing process, which was composed of two outer layers of polyvinylidene fluoride (PVDF, high dielectric constant) and a middle layer of polymethyl methacrylate (PMMA, high glass transition temperature, Tg). The two outer layers of TNF were filled with barium strontium titanate nanoparticles to further increase the dielectric constant of PVDF. The PMMA in the middle layer was used to largely suppress the dielectric loss and simultaneously improve the temperature tolerance of TNF. Results show that the introduction of PMMA induced oriented crystal formation in the interface regions between PVDF and PMMA components. Moreover, most of the impurity ions were dramatically immobilized by partly oriented α crystals and high Tg PMMA layer until the temperature exceeded 120 °C. Therefore, the TNFs showed a high‐temperature tolerance and notably decreased loss, which are promising for widespread energy storage applications where harsh working conditions are present. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1043–1052  相似文献   

18.
Bionanocomposites of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (P3HB3HHx) (13 % by mol of HHx) with multiwalled carbon nanotubes (MWCNTs) were prepared to obtain semiconductive nanocomposites for potential applications as scaffolds for nerve repair. The effect of the polymer/nanotube interface on the composite properties was studied using oxidized (oxi‐MWCNTs) and surface modified MWCNTs with low‐molecular weight P3HB3HHx (pol‐MWCNTs), in a ratio from 0.3 to 1.2 wt % for each type of MWCNTs employed. Morphology and conductive properties of the composites indicated a good interaction between pol‐MWCNTs and the polymer matrix. Composites with improved conductivity were obtained with only 0.3 wt % of pol‐MWCNTs added. However, agglomeration and lower conductivity was observed for samples with oxi‐MWCNTs. Cell viability studies carried out with neurospheres showed that samples with 1.2 wt % of pol‐MWCNTs are not cytotoxic and, in addition favors the neurospheres growth on the composite surface. Considering the electrical properties and biological behavior, nanocomposites of P3HB3HHx and pol‐MWCNTs are promising substrates for the regeneration of nerve tissue. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 349–360  相似文献   

19.
Poly(4‐methyl‐1‐pentene) (P4MP) was characterized to evaluate its viability as a high‐temperature dielectric film for capacitors. Detailed investigation of thermal, mechanical, rheological, and dielectric properties was carried out to assess its high‐temperature performance and processability. P4MP was melt‐processable below 270 °C without degradation and application temperatures as high as 160–190 °C can be achieved. The dielectric constant and loss of melt‐processed P4MP films was comparable to biaxially oriented polypropylene (BOPP) capacitor films, although the dielectric strength was lower. Enhancements in dielectric strength up to 250–300% were achieved via solution‐processing P4MP films, which could be easily scaled up on a roll‐to‐roll platform to yield isotropic, free‐standing films as thin as 3–5 μm. The influence of crystal structure, crystallinity, and surface morphology of these films on the dielectric properties was examined. The dielectric strength was further increased by 450% through biaxial stretching of solution‐cast films, and a Weibull breakdown field of 514 V/μm was obtained. The dielectric constant was very stable as a function of frequency and temperature and the dielectric loss was restricted to <1–2%. Overall, these results suggest that BOP4MP is a promising candidate to obtain similar energy density as a BOPP capacitor film but at much higher operating temperatures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1497–1515  相似文献   

20.
The sustainable resveratrol‐based phthalonitrile was used in the preparation of E‐glass fiber‐reinforced phthalonitrile composite panels fabricated by hot pressed prepreg consolidation with bis[4‐(3‐aminophenoxy)phenyl]sulfone (m‐BAPS) as the curing additive. This amorphous monomer exhibited excellent viscosities at temperatures below 200 °C, which is applicable to standard processing conditions. Rheometric measurements were used to evaluate the cure of the composite as a function of the postcure conditions. The composite retains >95% of its room temperature storage modulus up to 450 °C based on these postcuring parameters. More importantly, flammability performance of the composite—which was determined in terms of ignitability, heat release, and mass loss rate—excels over other state‐of‐the‐art polymer/glass composites. Even under the most extreme heat fluxes (e.g., 100 kW⋅m−2), the composite performs exceptionally well suggesting that resveratrol‐based phthalonitrile composites can be used in fire‐resistant applications. Published 2018. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1128–1132  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号