首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atomic dynamics of the Al0.550Si0.070Cu0.255Fe0.125 alloy with the structure that approximates the structure of an icosahedral quasicrystal with a similar chemical composition has been investigated using inelastic neutron scattering. The partial vibrational spectra of copper, iron, and aluminum atoms and the total spectrum of thermal vibrations of the compound have been directly reconstructed from the experimental data for the first time. A combined analysis of the results obtained and the data on the atomic dynamics of the i-AlCuFe icosahedral quasicrystal has been performed.  相似文献   

2.
The atomic dynamics of an Al0.62Cu0.255Fe0.125 icosahedral quasicrystal is investigated using inelastic neutron scattering (the isotopic contrast method). The partial vibrational spectra of copper, iron, and aluminum atoms in the icosahedral quasicrystal and the total spectrum of thermal vibrations of the compound are directly reconstructed from the experimental data for the first time. It is found that the vibrational energies of copper and iron atoms fall in relatively narrow ranges near 16 and 30 meV, respectively, whereas the vibrational energies of aluminum atoms lie in a wide range (up to 60 meV).  相似文献   

3.
李梧 《中国物理 B》2011,20(11):116201-116201
In this paper, we investigate the well-known problem of a finite width strip with a single edge crack, which is useful in basic engineering and material science. By extending the configuration to a two-dimensional decagonal quasicrystal, we obtain the analytic solutions of modes I and II using the transcendental function conformal mapping technique. Our calculation results provide an accurate estimate of the stress intensity factors KI and KII, which can be expressed in a quite simple form and are essential in the fracture theory of quasicrystals. Meanwhile, we suggest a generalized cohesive force model for the configuration to a two-dimensional decagonal quasicrystal. The results may provide theoretical guidance for the fracture theory of two-dimensional decagonal quasicrystals.  相似文献   

4.
In this paper we report the results obtained from inelastic neutron scattering measurements on Zr2NiH1.9 and Zr2NiH4.6 using triple-axis spectrometer at Dhruva reactor, Trombay. The spectrum up to 35 meV represents largely the lattice modes of Zr and Ni atoms. The vibrational frequencies of hydrogen atoms are expected predominantly at higher energies. The phonon spectra from 35–180 meV were recorded using a Be filter as analyser. In order to analyse the observed neutron spectra, we assume a set of Ein-stein modes due to the hydrogen atoms which are delta functions in energy. These delta functions are broadened by the resolution of the instrument. The vibrational frequencies obtained from the fitting of the observed phonon spectra have been assigned to various tetrahedral sites in both the compounds.  相似文献   

5.
The specific heat of decagonal Al71.3Ni24.0Fe4.7 and icosahedral Al62Cu25.5Fe12.5 quasicrystals and the Al55.0Si7.0Cu25.5Fe12.5 cubic phase approximating the structure of the icosahedral alloy has been studied in the temperature range 4.2–40.0 K. All the three compounds exhibit low coefficients of the electronic heat capacity and pronounced deviations of the low-temperature lattice heat capacity from a cubic temperature law in the range 5–10 K. The results obtained by the thermodynamic method and inelastic neutron scattering have been compared and analyzed. It has been established that, at energies ɛ < 14 meV, the spectral density of thermal vibrations in the icosahedral quasicrystal is substantially higher than those in the cubic approximant and in decagonal quasicrystal.  相似文献   

6.
The vibration-rotation spectra of the ν1 and ν8 fundamental bands of 32SF4 have been observed using Fourier-transform infrared spectroscopy. The band centre of the c-type ν1 symmetric sulphur-equatorial-fluorine stretching vibration was observed at 891.6 cm?1 and that for the b-type ν8 asymmetric sulphur-equatorial-fluorine stretching vibration at 864.6 cm?1. In total, 2044 rovibrational transitions have been assigned. Analysis of the spectra showed that the rotational states of the ν1 = 1 and ν8 = 1 upper vibrational levels are coupled by an a-type Coriolis interaction. This coupling has been treated both using perturbation theory and by the explicit inclusion of an appropriate Hamiltonian matrix element in a combined fit of the data for both bands. Spectroscopic parameters have been determined for the ground, ν1 = 1 and ν8 = 1 vibrational levels. Weaker transitions resulting from difference bands and the fundamental bands of the 34SF4 isotopomer have been identified but could not be assigned, because of the density of lines in the room-temperature spectrum. The possibility that discrepancies between the observed and predicted spectra of the ν1 fundamental may result from either a Coriolis interaction with the states of another vibrational level, or the effects of intramolecular exchange of axial and equatorial fluorine atoms is considered. The discussion is supported by theoretical calculations which show that the likely path for intramolecular exchange is via a C 4v transition state.  相似文献   

7.
The magnetic behavior of a decagonal quasicrystal Al40Mn25Fe15Ge20 system has been investigated by Mössbauer spectroscopy, magnetization and AC susceptibility measurements. Magnetization measured at low fields as a function of temperature shows a cusp-like peak around 41K. AC susceptibility also shows a sharp cusp, and the cusp shifts to a higher temperature as the frequency increases. These results strongly suggested that Al40Mn25Fe15Ge20 is a spin glass system with T g =41K. From the temperature dependence of the Mössbauer spectrum, we observed the appearance of a hyperfine field below around 50K. The temperature is a little higher than the cusp temperature, which is rather usual in spin glass systems.  相似文献   

8.
The fine structure of the fundamental vibrational bands and some combination tones of fullerite C60 in its IR absorption and reflection spectra, as well as in Raman spectra, has been studied. This structure is due to the overlapping components of Davydov and isotopic splittings and the removal of vibrational degeneracy with symmetry lowering. It is shown that for IR F u (i) bands (i = 1–4) and low-frequency H g (1) and A g (1) bands in the Raman spectrum the splittings at room temperature exceed those for the low-temperature phase. The enhancement of intermolecular interaction at elevated temperatures is explained by the nonequilibrium vibrational excitation of the medium as a result of nonlinear interaction of vibrational modes and by the change in the electronic states.  相似文献   

9.
The alkali metal halide doping of gallium‐sulfide glasses yields improvements in the optical, thermal and glass forming properties. To understand these improvements, the short‐range order of xCsCl(1 − x)Ga2S3 glasses was probed by Raman spectroscopy. Raman spectra have been interpreted using density functional theory (DFT) harmonic frequency calculations on specific clusters of GaS4H4 and/or GaS3H3Cl tetrahedral subunits. The assignment of the observed vibrational bands confirms the main structural conclusions obtained with X‐ray and neutron diffraction experiments and gives some new insights into the gallium‐network present in the xCsCl(1 − x)Ga2S3 glasses. At the lowest concentration, the observed spectrum may be interpreted with small clusters such as dimers and trimers connected by corner‐sharing (CS) GaS4H4 tetrahedral subunits. The vibrational fingerprints of tri‐clusters with three‐fold coordinated sulfur atoms have also been identified; however, no Raman signature of chlorine‐doped subunits has been found to be caused by their insufficient intensity. For higher CsCl concentrations, distinct spectral features corresponding to chlorine‐doped clusters appear and are increasing in intensity with x. In other words, undoped and Cl‐doped tetrahedra coexist in the xCsCl(1 − x)Ga2S3 glasses. The added chlorine atoms induce a fragmentation of the glass network and replace the sulfur atoms in the CS tetrahedral environment. The comparison of the observed spectra with theoretical predictions and diffraction data favoured one‐fold coordinated chlorine atoms in the glass network. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
落管中Al4Mn合金的形核研究   总被引:1,自引:0,他引:1       下载免费PDF全文
用1.2米长的落管对Al4Mn合金进行了形核与过冷的研究.在落管底部收集到的样品中得到了正交Al6Mn,β-Mn,两个十次准晶相关相、一个二十面体五次准晶相关相和十次准晶畴.发现这些相的含量与样品的尺寸大小有关,根据传统的形核理论对相含量与样品尺寸大小之间的关系作了定性的分析和讨论. 关键词:  相似文献   

11.
Abstract

A stable decagonal quasicrystal in Al70Pd30?xMnx alloys (x = 10–20) was examined by electron diffraction and high-resolution electron microscopy. The decagonal quasicrystalline grains are formed with definite crystallographic relationships to adjacent icosahedral and Al3Mn crystalline grains. The structure of the decagonal phase, which is formed as the main phase at near Al70Pd10Mn20 composition, is a mixture of decagonal quasicrystalline regions with some linear phason strain and microcrystalline regions. The structures of both regions may be interpreted in terms of quasiperiodic and periodic tilings, constructed with two types of bond lengths, S (about 2 nm) and L (= τ · S, where τ is the Golden ratio), of the same atom cluster with decagonal symmetry.  相似文献   

12.
The structure of an Al–Rh–Cu decagonal quasicrystal formed with two quasiperiodic planes along the periodic axis in an Al63Rh18.5Cu18.5 alloy has been studied by spherical aberration (Cs)-corrected high-angle annular detector dark-field (HAADF)- and annular bright-field (ABF)-scanning transmission electron microscopy (STEM). Heavy atoms of Rh and mixed sites (MSs) of Al and Cu atoms projected along the periodic axis can be clearly represented as separate bright dots in observed HAADF-STEM images, and consequently arrangements of Rh atoms and MSs on the two quasiperiodic planes can be directly determined from those of bright dots in the observed HAADF-STEM image. The Rh atoms are arranged in pentagonal tiling formed with pentagonal and star-shaped pentagonal tiles with an edge-length of 0.76 nm, and also MSs with a pentagonal arrangement are located in the pentagonal tiles with definite orientations. The star-shaped pentagonal tiles in the pentagonal tiling are arranged in τ2(τ: golden ratio)-inflated pentagonal tiling with a bond-length of 2 nm. From arrangements of Rh atoms placed in pentagonal tilings with a bond-length of 2 nm, which are generated by the projection of a five-dimensional hyper-cubic lattice, occupation domains in the perpendicular space are derived. Al atoms as well as Rh atoms and MSs are represented as dark dots in an observed ABF-STEM image, and arrangements of Al atoms in well-symmetric regions are discussed.  相似文献   

13.
A theory of vibrational spectra of solid solutions proposed by the author has been developed, in which a cluster of n cells statistically filled with impurity atoms is used as a phonon scattering unit. The calculation of vibrational spectra of a disordered linear chain in the generalized non-self-consistent approximation has demonstrated a strong dependence of the spectrum on the number n. For n = 6, the calculated spectrum is in an excellent agreement with the result of the computer experiment performed by Dean for a chain of 8000 atoms. The maximum number of impurities in the cluster to be considered depends on the magnitude of the initial damping (in real crystals, it is damping due to anharmonicity). The spectrum has also been calculated in the generalized self-consistent approximation. This calculation gives a smeared structureless curve, which absolutely does not agree either with the theoretical calculation in the non-self-consistent approximation or with the results obtained by Dean. This means that the generalized self-consistent approximation overestimates the weight of the incoherent scattering processes, which leads to averaging of the phases. The spectrum of a three-dimensional solid solution is calculated using a simple model of the crystal.  相似文献   

14.
The vibrational spectra of the condensed phases of water often show broad and strongly overlapping spectral features which can make spectroscopic interpretations and peak assignments difficult. The Raman spectra of hydrogen‐ordered H2O and D2O ice XV are reported here, and it is shown that the spectra can be fully interpreted in terms of assigning normal modes to the various spectral features by using density functional theory (DFT) calculations. The calculated lattice‐vibration spectrum of the experimental antiferroelectric structure is in good agreement with the experimental data whereas the spectrum of a ferroelectric Cc structure, which computational studies have suggested as the crystal structure of ice XV, differs substantially. Moreover, the calculated coupled O–H stretch spectrum also seems in better agreement with the experiment than the calculated spectrum for the Cc structure. Both the hydrogen bonds as well as the covalent bonds appear to be stronger in hydrogen‐ordered ice XV than in the hydrogen‐disordered counterpart ice VI. A new type of stretching mode is identified, and it is speculated that this kind of mode might be relevant for other condensed water phases as well. Furthermore, the ice XV spectra are compared to the spectra of ice VIII which is the only other high‐pressure phase of ice for which detailed spectroscopic assignments have been made so far. In summary, we have established a link between crystallographic data and spectroscopic information in the case of ice XV by using DFT‐calculated spectra. Such correlations may eventually help interpreting the vibrational spectra of more structurally‐disordered aqueous systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Structure of the Al---Rh---Cu decagonal quasicrystal has been studied by high-resolution electron microscopy. The high-resolution structure image shows an aperiodic tiling composed of three kinds of subunits, namely flattened hexagon, crown and five star. Therefore, a structural model of the Al---Rh---Cu decagonal quasicrystal has been constructed in a unit-cell approach, in which the atom arrangements in the subunits have been proposed. It is known that the phase has two layers in a period of 0.4 nm along the unique tenfold axis according to the previous study by electron diffraction method. The ideal model of the Al---Rh---Cu decagonal quasicrystal is proposed as periodic stacking of the layers with quasiperiodic tessellation of the three kinds of subunits, in each layer the two-colour Penrose tiling is obtained if different atom decorations for the same shape subunits are distinguished by white and black colours. Calculated images reproduces well the contrast features of the observed images, which means that the present model is basically correct. Structural relationship between the Al---Rh---Cu decagonal quasicrystal and the previously reported Al---Ni---Co decagonal quasicrystal, which has also a period of 0.4 nm, has also been discussed.  相似文献   

16.
The total and partial vibrational spectra of aluminum, copper, and iron atoms in an Al-Cu-Fe icosahedral quasicrystal are calculated by the recursive method. The calculations are based on the 1/1 crystal approximant. The interaction of atoms in the Al-Cu-Fe quasicrystal is described within the EAM model. The calculated spectra are in satisfactory agreement with the experimental data on neutron inelastic scattering.  相似文献   

17.
Electron spectra and wave functions of icosahedral quasicrystals have been investigated in the tight-binding approximation using the two-fragment structural model (the Amman-MacKay network) with “central” decoration. A quasicrystal has been considered as a limiting structure in a set of optimal cubic approximants with increasing lattice constants. The method of level statistics indicates that the energy spectrum of an icosahedral quasicrystal contains a singular (nonsmooth) component. The density of electron states has been calculated for the first four optimal cubic approximants of the icosahedral quasicrystal, and the respective Lebesgue measures of energy spectra of these approximants have been obtained. Unlike the case of a one-dimensional quasiperiodic structure, the energy spectrum of an icosahedral quasicrystal does not contain a hierarchical gap structure typical of the Cantor set of measure zero in a one-dimensional quasicrystal. Localization of wave functions in an icosahedral quasicrystal has been studied, and their “critical” behavior has been detected. The effect of disorder due to substitutional impurities on electron properties of icosahedral quasicrystals has been investigated. This disorder makes the electron spectrum “smoother” and leads to a tendency to localization of wave functions. Zh. éksp. Teor. Fiz. 113, 1009–1025 (March 1998)  相似文献   

18.
Two sets of vibrational satellites have been observed in the rotational spectrum of sodium tetrahydroborate NaBH4, and have been assigned to the non-degenerate, Na—BH4 stretching and the degenerate BH4 rocking (or internal rotation) states. The observation was extended from the J = 11 ← 10 up to J = 20 ← 19 transitions. The vibrational satellites showed anomalous K structure; higher-K lines of the non-degenerate state appeared at higher frequencies, in reverse to those of the ground state, whereas the spectra in the degenerate state exhibited a K pattern similar to but somewhat more widely spread than that of the ground state. These anomalies are ascribed to the Coriolis interaction between the two excited vibrational states. The spectra observed were analysed using a C3v symmetric-top rotational Hamiltonian, which took into account the Coriolis interaction explicitly. The A rotational constants, the energy difference δE between the two interacting vibrational states, and the first- and second-order Coriolis interaction constants have been derived.  相似文献   

19.
The interaction of oxygen with the 10-fold-symmetry surface of the decagonal Al72.9Co16.7Ni10.4 quasicrystal at high temperatures was investigated by low-energy-electron diffraction and Auger electron spectroscopy. The results are consistent with a well-ordered aluminum-oxide layer possessing a hexagonal antiphase domain structure with a limited lateral size of about 35 Å. We claim that the separation distances of the domain boundaries, separating domains of equal orientation, are primarily a consequence of the preferential cluster nucleation on decagonal Al-Co-Ni. The domains are azimuthally oriented along one direction of the two sets of five twofold-symmetry axes lying on the decagonal surface in accordance with the local symmetry of the quasicrystal surface, while the size of the domains can be explained in terms of self-size-selecting arguments.  相似文献   

20.
Quantum-chemical calculations of the geometric structure and vibrational spectra of lanthanide endofullerenes have been carried out. The vibrational frequencies of lanthanide atoms depend substantially on the symmetry of the molecular structure of the endofullerene and on the distance between the metal atom and the carbon cage. The infrared spectra of the endofullerenes M@C60 contain vibrations that are forbidden by symmetry for the empty fullerene C60. A change in the vibrational spectra due to the encapsulation of a metal atom in fullerenes with a C60 cage is considerably more pronounced than that of the higher fullerenes. In the vibrational spectra, there are lines not characteristic of C60, which indicates the presence of M@C60 endofullerenes in a mixture with C60 fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号