首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immobilization of proteins on gold-coated magnetic nanoparticles and the subsequent recognition of the targeted proteins provide an effective means for the separation of proteins via application of a magnetic filed. A key challenge is the ability to fabricate such nanoparticles with the desired core-shell nanostructure. In this article, we report findings of the fabrication and characterization of gold-coated iron oxide (Fe2O3 and Fe3O4) core@shell nanoparticles (Fe oxide@Au) toward novel functional biomaterials. A hetero-interparticle coalescence strategy has been demonstrated for fabricating Fe oxide@Au nanoparticles that exhibit controllable sizes ranging from 5 to 100 nm and high monodispersity. Composition and surface analyses have proven that the resulting nanoparticles consist of the Fe2O3 core and the Au shell. The magnetically active Fe oxide core and thiolate-active Au shell were shown to be viable for exploiting the Au surface protein-binding reactivity for bioassay and the Fe oxide core magnetism for magnetic bioseparation. These findings are entirely new and could form the basis for fabricating magnetic nanoparticles as biomaterials with tunable size, magnetism, and surface binding properties.  相似文献   

2.
Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles   总被引:16,自引:0,他引:16  
High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe(3)O(4) can be oxidized to Fe(2)O(3), as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.  相似文献   

3.
Ionic liquids (ILs)-stabilized iron oxide (Fe(2)O(3)) nanoparticles were synthesized by the ultrasonic decomposition of iron carbonyl precursors in [EMIm][BF(4)] without any stabilizing or capping agents. The Fe(2)O(3) nanoparticles were isolated and characterized by X-ray powder diffraction, transmission electron microscopy and susceptibility measurements. The physicochemical properties of ILs containing magnetic Fe(2)O(3) nanoparticles (denoted as Fe(2)O(3)@[EMIm][BF(4)]), including surface properties, density, viscosity and stability, were investigated in detail and compared with that of [EMIm][BF(4)]. The Fe(2)O(3)@[EMIm][BF(4)] can be directly used as magnetic ionic liquid marble by coating with hydrophobic and unreactive polytetrafluoroethylene (PTFE), for which the effective surface tension was determined by the puddle height method. The resulting magnetic ionic liquid marble can be transported under external magnetic actuation, without detachment of magnetic particles from the marble surface that is usually observed in water marble.  相似文献   

4.
Magnetic iron(II, III) oxide (magnetite, Fe(3)O(4)) nanoparticles were used to selectively enrich phosphopeptides from tryptic digests of bovine beta-casein and from tryptic digest mixtures containing bovine beta-casein, cytochrome c, bovine serum albumin, and horse heart myoglobin. The magnetic property of the particles permits an easy and speedy enrichment process. No enrichment of phosphopeptides was observed from ferric magnetic iron(III) oxide (Fe(2)O(3)) nanoparticles. These data collectively demonstrate that the enrichment of phosphopeptides using magnetic iron(II, III) oxide nanoparticles is a practical method for the selective analysis of phosphopeptides and could be helpful in isolating and analyzing phosphorylated peptides from complex biological samples.  相似文献   

5.
We report on the use of bisphosphonate to functionalize Fe3O4 magnetic nanoparticles via dopamine (DA) linkage. Using tetraethyl-3-aminopropane-1,1-bisphosphonate (BP) as the functional molecule, we created a system with an Fe3O4-DA-BP nanostructure, which possesses high specificity for removing uranyl ions from water or blood. This work demonstrates that magnetic nanoparticles, combined with specific receptor-ligand interactions, promise a sensitive and rapid platform for the detection, recovery, and decorporation of metal toxins from biological environment.  相似文献   

6.
We report a simple process to generate iron oxide coated gold nanorods. Gold nanorods, synthesized by our three-step seed mediated protocol, were coated with a layer of polymer, poly(sodium 4-styrenesulfonate). The negatively charged polymer on the nanorod surface electrostatically attracted a mixture of aqueous iron(II) and iron(III) ions. Base-mediated coprecipitation of iron salts was used to form uniform coatings of iron oxide nanoparticles onto the surface of gold nanorods. The magnetic properties were studied using a superconducting quantum interference device (SQUID) magnetometer, which indicated superparamagnetic behavior of the composites. These iron oxide coated gold nanorods were studied for macroscopic magnetic manipulation and were found to be weakly magnetic. For comparison, premade iron oxide nanoparticles, attached to gold nanorods by electrostatic interactions, were also studied. Although control over uniform coating of the nanorods was difficult to achieve, magnetic manipulation was improved in the latter case. The products of both synthetic methods were monitored by UV-vis spectroscopy, zeta potential measurements, and transmission electron microscopy. X-ray photoelectron spectroscopy was used to determine the oxidation state of iron in the gold nanorod-iron oxide composites, which is consistent with Fe2O3 rather than Fe3O4. The simple method of iron oxide coating is general and applicable to different nanoparticles, and it enables magnetic field-assisted ordering of assemblies of nanoparticles for different applications.  相似文献   

7.
Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. M?ssbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the M?ssbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From M?ssbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active towards formation of carbon nanotubes by a CVD process. Depending on the reaction conditions, the formation of smaller carbon nanotubes inside the interior of larger carbon nanotubes within the alumina pores can be achieved. This behavior can be understood by means of selectively turning on and off the iron catalyst by adjusting the flow rate of the gaseous carbon precursor in the CVD process.  相似文献   

8.
Magnetic multilayered, onion-like, heterostructured nanoparticles are interesting model systems for studying magnetic exchange coupling phenomena. In this work, we synthesized heterostructured magnetic nanoparticles composed of two, three, or four components using iron oxide seeds for the subsequent deposition of manganese oxide. The MnO layer was allowed either to passivate fully in air to form an outer layer of Mn(3)O(4) or to oxidize partially to form MnO|Mn(3)O(4) double layers. Through control of the degree of passivation of the seeds, particles with up to four different magnetic layers can be obtained (i.e., FeO|Fe(3)O(4)|MnO|Mn(3)O(4)). Magnetic characterization of the samples confirmed the presence of the different magnetic layers.  相似文献   

9.
Research on Chemical Intermediates - This work describes the synthesis of magnetic graphene oxide (MGO), where iron oxide (Fe3O4) nanoparticles were uniformly deposited over the sheets of the...  相似文献   

10.
Journal of Radioanalytical and Nuclear Chemistry - In this study, iron oxide nanoparticles (Fe3O4) and iron oxide nanoparticles with humic acid coatings (Fe3O4/HA) were investigated for the removal...  相似文献   

11.
Fluorescent/magnetic nanoparticles are of interest in many applications in biotechnology and nanomedicine for its living detection. In this study, a novel method of surface modification of nanoparticles was first used to modify a fluorescent monomer on the surfaces of magnetic nanoparticles directly. This was achieved via iron(III)-mediated atom-transfer radical polymerization with activators generated by electron transfer (AGET ATRP). Fluorescent monomer 9-(4-vinylbenzyl)-9H-carbazole (VBK) was synthesized and was grafted from magnetic nanoparticles (ferroferric oxide) via AGET ATRP using FeCl(3)·6H(2)O as the catalyst, tris(3,6-dioxaheptyl)amine (TDA-1) as the ligand, and ascorbic acid (AsAc) as the reducing agent. The initiator for ATRP was modified on magnetic nanoparticles with the reported method: ligand exchange with 3-aminopropyltriethoxysilane (APTES) and then esterification with 2-bromoisobutyryl bromide. After polymerization, a well-defined nanocomposite (Fe(3)O(4)@PVBK) was yielded with a magnetic core and a fluorescent shell (PVBK). Subsequently, well-dispersed bifunctional nanoparticles (Fe(3)O(4)@PVBK-b-P(PEGMA)) in water were obtained via consecutive AGET ATRP of hydrophilic monomer poly(ethylene glycol) methyl ether methacrylate (PEGMA). The chemical composition of the magnetic nanoparticles' surface at different surface modification stages was investigated with Fourier transform infrared (FT-IR) spectra. The magnetic and fluorescent properties were validated with a vibrating sample magnetometer (VSM) and a fluorophotometer. The Fe(3)O(4)@PVBK-b-P(PEGMA) nanoparticles showed an effective imaging ability in enhancing the negative contrast in magnetic resonance imaging (MRI).  相似文献   

12.
Nanocomposite materials containing 10% and 20% iron oxide/silica, Fe2O3/SiO2 (w/w), were prepared by direct hydrolysis of aqueous iron III nitrate solution in sols of freshly prepared spherical silica particles (St?ber particles) present in their mother liquors. This was followed by aging, drying, calcination up to 600 degrees C through two different ramp rates, and then isothermal calcinations at 600 degrees C for 3 h. The calcined and the uncalcined (dried at 120 degrees C) composites were characterized by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption techniques, and scanning electron microscopy as required. XRD patterns of the calcined composites showed no line broadening at any d-spacing positions of iron oxide phases, thereby reflecting the amorphous nature of Fe2O3 in the composite. The calcined composites showed nitrogen adsorption isotherms characterizing type IV isotherms with high surface area. Moreover, surface area increased with the increasing of the iron oxide ratio and lowering of the calcination ramp rate. Results indicated that iron oxide particles were dispersed on the exterior of silica particles as isolated and/or aggregated nanoparticles. The formation of the title composite was discussed in terms of the hydrolysis and condensation mechanisms of the inorganic FeIII precursor in the silica sols. Thereby, fast nucleation and limited growth of hydrous iron oxide led to the formation of nanoparticles that spread interactively on the hydroxylated surface of spherical silica particles. Therefore, a nanostructured composite of amorphous nanoparticles of iron oxide (as a shell) spreading on the surface of silica particles (as a core) was formed. This morphology limited the aggregation of Fe2O3 nanoparticles, prevented silica particle coalescence at high temperatures, and enhanced thermal stability.  相似文献   

13.
Magnetic multiwalled carbon nanotubes (MWNTs) were facilely prepared by the electrostatic self-assembly approach. Poly(2-diethylaminoethyl methacrylate) (PDEAEMA) was covalently grafted onto the surfaces of MWNTs by MWNT-initiated in situ atom transfer radical polymerization (ATRP) of 2-diethylaminoethyl methacrylate (DEAEMA). The PDEAEMA-grafted MWNTs were quaternized with methyl iodide (CH(3)I), resulting in cationic polyelectrolyte-grafted MWNTs (MWNT-PAmI). Magnetic iron oxide (Fe(3)O(4)) nanoparticles were loaded onto the MWNT surfaces by electrostatic self-assembling between MWNT-PAmI and Fe(3)O(4), affording magnetic nanotubes. The assembled capability of the nanoparticles can be adjusted to some extent by changing the feed ratio of Fe(3)O(4) to MWNT-PAmI. The obtained magnetic nanotubes were characterized with TEM, EDS, STEM, and element mapping analyses. TEM and EDS measurements confirmed the nanostructures and the components of the resulting nanoobjects. The magnetic nanotubes were assembled onto sheep red blood cells in a phosphate buffer solution, forming magnetic cells. The blood cells attached with or without magnetic nanotubes can be selectively manipulated in a magnetic field. These results promise a general and efficient strategy to magnetic nanotubes and the fascinating potential of such magnetic nanoobjects in applications of bionanoscience and technology.  相似文献   

14.
Mesoporous magnetic Fe3O4@C nanoparticles have been synthesized by a one-pot approach and used as adsorbents for removal of Cr (Ⅳ) from aqueous solution. Magnetic iron oxide nanostructured materials encapsulated by carbon were characterized by scanning electron microscope (SEM), nitrogen adsorption and desorption, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The adsorption performance of the nanomaterial adsorbents is tested with the removal of Cr (Ⅳ) from aqueous solution. The results reveal that the mesoporous magnetic Fe3O4@C nanospheres exhibit excellent adsorption efficiency and be easily isolated by an external magnetic field. In comparison with magnetic Fe3O4 nanospheres, the mesoporous magnetic Fe3O4@C exhibited 1.8 times higher removal rate of Cr Ⅵ. Themesoporous structure and an abundance of hydroxy groups on the carbon surfacemay be responsible for high absorbent capability.  相似文献   

15.
Fe(2+) cations in FeCl(2) or FeSO(4) were oxidized by graphene oxide, leading to an in situ deposition of Fe(3)O(4) nanoparticles onto the self-reduced graphene oxide (rGO) sheets. The resultant Fe(3)O(4)/rGO sheets were demonstrated to possess interesting magnetic and electrochemical properties attractive for a large variety of potential applications.  相似文献   

16.
Ferrofluids, which are stable dispersions of magnetic particles, behave as liquids that have strong magnetic properties. Nanoparticles of magnetite with a mean diameter of 10-15 nm, which are in the range of superparamagnetism, are usually prepared by the traditional method of co-precipitation from ferrous and ferric electrolyte solution. When diluted, the ferrofluid dispersions are not stable if anionic or cationic surfactants are used as the stabilizer. This work presents an efficient way to prepare a stable aqueous nanomagnetite dispersion. A stable ferrofluid containing Fe3O4 nanoparticles was synthesized via co-precipitation in the presence of poly(acrylic acid) oligomer. The mechanism, microstructure, and properties of the ferrofluid were investigated. The results indicate that the PAA oligomers promoted the nucleation and inhibited the growth of the magnetic iron oxide, and the average diameter of each individual Fe3O4 particle was smaller than 10 nm. In addition, the PAA oligomers provided both electrostatic and steric repulsion against particle aggregation, and the stability of dispersions could be controlled by adjusting the pH value of solution. A small amount of Fe2O3 was found in the nanoparticles but the superparamagnetic behavior of the nanoparticles was not affected.  相似文献   

17.
This work describes the use of mesoporous SBA-15 silicas as hard templates for the size-controlled synthesis of oxide nanoparticles, with the pores acting as nanoscale reactors. This fundamental work is mainly aimed at understanding unresolved issues concerning the occurrence and size dependence of phase transitions in oxide nanocrystals. Aqueous solutions of Fe(NO3)3*9H2O are deposited inside the pores of SBA-15 silicas with mesopore diameters of 4.3, 6.6, and 9.5 nm. By calcination, the nitrate salt transforms into FeOx oxides. The XRD peaks of nanocrystals are broad and overlapping, resulting in ambiguities attributed to a given allotropic variety of Fe2O3 (alpha, epsilon, or gamma) or Fe3O4. The association of XRD, SAED, and Raman information is necessary to solve these ambiguities. The metastable gamma-Fe2O3 variety is selectively formed at low Fe/Si atomic ratio (ca. 0.20) and when a low calcination temperature is used (773 or 873 K followed by quenching to room temperature once the targeted temperature is reached). The small size dispersion of the patterned nanoparticles, suggested on a local scale by TEM, is confirmed statistically by magnetic measurements. The nanoparticles have a superparamagnetic behavior around room temperature. Their magnetic moments (from 220 to 370 mB), their sizes (from 4.0 to 4.8 nm), and their blocking temperatures (from 36 to 58 K) increase with the silica template mesopore diameter. Their magnetic properties are compared to those of standard gamma-Fe2O3 nanoparticles of similar size, obtained by coprecipitation in water and stabilized by a citrate coating.  相似文献   

18.
Ordered mesoporous Fe(3)O(4) with crystalline walls (inverse spinel structure) has been synthesized for the first time, representing to the best of our knowledge, the first synthesis of a reduced mesoporous iron oxide. Synthesis was achieved by reducing ordered mesoporous alpha-Fe(2)O(3) (corundum structure) to Fe(3)O(4) spinel then to gamma-Fe(2)O(3) by oxidation, while preserving the ordered mesostructure and crystalline walls throughout. Such solid/solid transformations demonstrate the stability of the mesostructure to structural phase transitions from the hexagonal close packed oxide subarray of alpha-Fe(2)O(3) (corundum structure) to the cubic close packed subarray of Fe(3)O(4) spinel and gamma-Fe(2)O(3). Preliminary magnetic measurements reveal that the spins in both Fe(3)O(4) and gamma-Fe(2)O(3) are frozen at 295 K, despite the wall thickness (7 nm) being less than the lower limit for such freezing in corresponding nanoparticles (>8 nm).  相似文献   

19.
Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations.  相似文献   

20.
We report the tuning of the redox properties of iron and iron oxide nanoparticles by encapsulation within carbon nanotubes (CNTs) with varying inner diameters. Raman spectroscopy was employed to investigate the interaction of the encapsulated nanoparticles with the CNTs. A red shift of the Fe-O mode is observed in the nanoparticles deposited on the outer CNT surfaces with respect to bulk Fe2O3. However, this mode is found to be stepwise blue-shifted with decreasing inner diameter in the CNT-encapsulated Fe2O3 nanoparticles, suggesting an enhanced interaction of Fe2O3 with the inner CNT surface as its curvature increases. The autoreduction of the encapsulated Fe2O3 is significantly facilitated inside CNTs with respect to the outside nanoparticles. Interestingly, it becomes more facile with decreasing CNT channel diameter as evidenced by temperature programmed reaction, in situ XRD, and Raman spectroscopy. The oxidation of encapsulated metallic Fe nanoparticles on the other hand is retarded in comparison to that of the outside Fe particles as shown by in situ XRD and gravimetrical measurements with an online microbalance. We attribute this tunable redox behavior of transition metal nanoparticles inside CNTs to a particular electronic interaction of the encapsulates with the interior CNT surface, which stabilizes the metallic state of Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号