首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, combined moisture/ultraviolet (UV) weathering performance of unbleached and bleached Kraft wood fibre reinforced polypropylene (PP) composites was studied. Composites containing 40 wt% fibre with 3 wt% of a maleated polypropylene (MAPP) coupling agent were fabricated using extrusion followed by injection moulding. Composite mechanical properties were evaluated, before and after accelerated weathering for 1000 h, by tensile and impact testing. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were also carried out to assess the changes occurring during accelerated weathering. Bleached fibre composites initially showed higher tensile and impact strengths, as well as higher thermal stability and greater crystallinity. During accelerated weathering, both unbleached and bleached fibre composites reduced tensile strength (TS) and Young's modulus (YM), with the extent of the reduction found to be similar for both unbleached and bleached fibre composites. Evidence supported that the reduction of TS and YM was due to PP chain scission, degradation of lignin and reduced fibre-matrix interfacial bonding.  相似文献   

2.
The weathering of wood-plastic composites changes their appearance and/or mechanical properties. These changes can be slowed through the addition of ultraviolet absorbers and pigments. The first phase of this study examined the effect of incorporating different concentrations of an ultraviolet absorber and/or pigment into wood-flour-filled high-density polyethylene (WF/HDPE) composites. Lightness and flexural properties of the composites were determined periodically during exposure to UV radiation and water spray in a xenon-arc type weathering apparatus. The influence of exposure type (UV radiation, with or without water spray) on the properties of photostabilized WF/HDPE composites was determined in the second phase of the study. The results showed that both ultraviolet absorbers and pigments provide protection against weathering of wood-plastic composites. The amount of protection can be influenced by both photostabilzer concentration and exposure variables.  相似文献   

3.
The influence of weathering on the fire retardancy of polymers is investigated by means of a cone calorimeter test, before and after artificial weathering. The surface degradation was monitored using different techniques (ATR-FTIR, microscopy, colour measurement). Different kinds of polymeric materials were chosen, all as they are used in practice: polycarbonate (PC) blends, polyamide (PA) and polypropylene (PP) flame-retarded with arylphosphate, melamine cyanurate (MC) and intumescent formulation based on ammonium polyphosphate (APP), respectively.All samples show material degradation at the surface due to weathering. No significant weathering influence occurs on the flame retardancy when it is a bulk property, as was observed for aryl phosphates in PC blends and MC in PA. When the fire retardancy is dominated by a surface mechanism, dependence on the duration of weathering is detected: for intumescent formulations based on ammonium APP in PP, a worsening in the formation of the intumescent network was observed.  相似文献   

4.
Accelerated weathering of polypropylene/wood flour composites   总被引:3,自引:0,他引:3  
Wood-plastic composites (WPCs) have received increasing attention during the last decades, because of many advantages related to their use. Some of their main applications are represented by outdoor furnishing and decking; therefore, it is important to assess their behaviour under UV exposure. In this work, polypropylene/wood flour composites were prepared and their resistance to photooxidation investigated. The composites were prepared by extrusion and compression moulding, and were subjected to mechanical tests, FTIR analysis and molecular weight measurements. The results showed that the composites retained a higher fraction of the original mechanical properties after accelerated weathering; the wood flour did not significantly degrade throughout the irradiation time slot of the investigation and the composites kept a higher percentage of the original molecular weight.  相似文献   

5.
The use of ToF-SIMS and XPS in industrial research is demonstrated by a number of applications of surface analysis within Akzo Nobel: surface treatment of carbon fibers, adhesion activation of aramid fibers, weathering and protection of wood, surfactant adsorption on pigments, grafting of polypropylene with acrylic monomers and treatment of a perfluorinated membrane with an amphiphile. The examples illustrate the broad use of these techniques on non-conducting organic and polymeric materials.  相似文献   

6.
In the view of producing environmentally friendly materials without compromising properties, new composites containing polypropylene as a matrix and eucalyptus wood, with or without 15% of polylactic acid, were melt processed. In order to improve compatibility between components, a chemical modification of wood with toluene-2,4-diisocyanate (TDI) was realized and evidenced by changes in FT-IR and XPS spectra. The morphological, mechanical, and thermal characterizations of the obtained composites were evaluated before and after accelerating weathering. The results showed that the material comprising 15% TDI-modified wood, PP, and 15% PLA exhibited the best properties.  相似文献   

7.
Kapok/cotton fabric has been used as reinforcement for conventional polypropylene and maleic anhydride grafted polypropylene resins. Treating the reinforcement with acetic anhydride and sodium hydroxide has modified the fabric (fibres). Thermal and mechanical properties of the composites were investigated. Results show that fibre modification gives a significant improvement to the thermal properties of the plant fibres, whereas tests on the mechanical properties of the composites showed poor tensile strength. Mercerisation and weathering were found to impart toughness to the materials, with acetylation showing slightly less rigidity compared to other treatments on either the fibre or composites. The modified polypropylene improved the tensile modulus and had the least toughness of the kapok/cotton reinforced composites. MAiPP reinforced with the plant fibres gave better flexural strength and the same flexural modulus at lower fibre content compared with glass fibre reinforced MAiPP.  相似文献   

8.
Plasma treatments can be utilized to upgrade the value of lignocellulosic materials for applications such as biobased composites. Poor adhesion in biobased composites is caused by incompatibility between polar cellulosics and non-polar thermoplastics. Plasma modification of both cellulose and polypropylene was evaluated by a T-peel test for improved compatibility and adhesion between these materials. Oxygen and argon plasmas were used to modify the surface of polypropylene films, while a cyclohexane plasma was used to modify the cellulose surface through deposition of a hydrophobic polymer layer. For plasma treatment of polypropylene, changes in power input had a greater effect on adhesion than changes in pressure. Surface oxidation and increased acid/base characteristics were found on both argon- and oxygen-plasma-treated polypropylene based on ESCA and wetting measurements. With the non-reactive argon plasma the persistence of reactive species, such as free radicals, was very important for enhanced adhesion. The amount of polar carbonyl groups introduced onto the surface was also an important factor for adhesion improvement. Modification of the cellulose (filter paper) surface to a hydrophobic character with a cyclohexane plasma did not improve adhesion to polypropylene.  相似文献   

9.
Two easy laboratory methods for preparation of rare-earth orthophosphates (crystallisation from phosphoric acid solution and solid-state reaction with (NH4)2HPO4) were compared on the basis of the products’ properties with a focus on their application as new inorganic pigments. The preparation method has a significant influence on optical properties. The samples prepared by crystallisation have lighter and less rich colour and also change colour more under sunlight irradiation. The surface properties analysed by SEM and presence of a greater amount of phosphoric acid in the crystallisation procedure influence the pH and resistivity of aqueous extract of products and thus their corrosion-inhibition properties. The optical properties of rare-earth orthophosphates and their preliminary corrosion tests show their potential application as highly efficient corrosion-inhibition pigments.  相似文献   

10.
Rheological Behavior for Mica-filled Polypropylene Composite Melts   总被引:2,自引:0,他引:2  
The study on rheological properties of a series of mica-filled polypropylene (PP) composites was carried out. The influence of surface-treatment of mica particles on dynamic rheological behavior of the composites were dealt with. The viscosity (η) and dynamic modulus ( G‘ ) of the composite melts were higher than those of PP matrix, especially those for systems treated with silane, which was attributed to the interfacial adhesion enhancement. However, surface-treatment of mica by titanate resulted in lower η and G‘, as compared with the treatment by silane. The reason for this is believed to be the formation of the mono-molecular layer on the mica surface.  相似文献   

11.
In this study, the comparisons of degradation behavior of polypropylene(PP) and PP/talc composites were carried out with one outdoor weathering test and three accelerated weathering (xenon, metal halide and carbon arc lamps) tests, respectively. The outdoor exposure vigorously advanced these degradations with the lowest amount of UV exposure energy. It was found that the degradation rates were affected by the visible light intensity in the light sources. In the case of the existence of talc compound, the degradation was synergistically accelerated by the exposures of the sunshine, the xenon and the metal halide lamps having higher visible light intensities. In addition, the degradations of the PP and the PP/talc composites were found to be synergistically accelerated by sunlight exposure and the acid rain, too.  相似文献   

12.
Composites made from an isotactic polypropylene matrix and wood (pine or beech) have been prepared and tested. To improve adhesion between components, the wood modification was performed by esterification with maleic, propionic, crotonic, succinic and phthalic anhydrides. The surface of wood fillers was also modified by chemical treatment with NaOH as well as by extraction process. Non-isothermal crystallisation of polypropylene in wood composites is studied by DSC, and the basic parameters of crystallisation are determined. We discovered that the composites containing chemical treated wood fillers showed the tendency reduction the nucleation efficiency of polypropylene. The ability of wood filler to induce nucleation in polypropylene matrix is dependent on the kind of chemical modification of surface wood  相似文献   

13.
A sodium montmorillonite and six organophilic montmorillonites coated with different surfactants were characterized in various ways in the study. Particle and surface characteristics were determined by nitrogen adsorption and inverse gas chromatography, respectively. The gallery structure of organophilic montmorillonite, the orientation of surfactants in the galleries, and surface coverage were estimated by X-ray diffraction measurements and model calculations. The effect of organophilization on the properties of polypropylene/clay composites was determined by the measurement of tensile properties. The results showed that the surface energy of uncoated layered silicates is large; thus, the forces keeping the layers together are very strong. The long chain surfactants used for the coating of montmorillonite orientate more or less parallel to the surface and usually cover the platelets in a single layer in commercial silicates. Surplus surfactant is not located in the galleries, but among the particles, and might influence the properties of composites negatively. Organophilization leads to the drastic decrease of surface free energy. Surface tension of all coated clays is practically the same, irrespective of the type of the surfactant used for treatment. Low surface energy leads to weaker forces between the layers, which might facilitate exfoliation. This effect can be further enhanced by the use of surfactants with two long aliphatic chains, one of which orientates vertically to the surface, leading to larger gallery distance. Polymer/silicate interaction also decreases as an effect of decreasing surface tension proved by the decrease of tensile yield stress of polypropylene/montmorillonite composites. Besides surface tension, the exfoliation of layered silicates is influenced by several other factors as well, like gallery distance, mutual solubility of the components, competitive adsorption, or possible chemical reactions.  相似文献   

14.
Polylactic acid (PLA) was used as partial replacement for conventional thermoplastic matrix, new composites comprising cellulose, polypropylene (PP), and PLA being realized. In order to obtain a compatible interface between cellulosic pulp and polymeric matrix, two chemical modifications of cellulose with stearoyl chloride and toluene di‐isocyanate (TDI) were performed, structural changes being evidenced by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The composite materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic scanning calorimetry, impact, tensile and melt rheological tests, surface tension, and dynamic vapor sorption. Because promising results for impact strength and Young modulus were recorded when replacing 15% of PP with PLA in blends of PP with the same cellulosic pulp load, the aim of our study was to assess the behavior to accelerate weathering of composites comprising PP, cellulosic pulp, and PLA. Although the slight decrease in the mechanical properties was recorded after accelerated weathering, the use of functionalized cellulose successfully prevented the deterioration of surface materials, especially for composite comprising stearoyl chloride treated cellulose pulp. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Novel high-strength, micro-fibrillated cellulose (MFC)-reinforced polypropylene (PP) composites were prepared using maleic anhydride polypropylene (MAPP) and a cationic polymer having a primary amino group (CPPA) as coupling agents. Un-dried kraft pulp was micro-fibrillated into nano- to submicron-wide fibrils by kneading with powdered PP and the coupling agents via a twin-screw extruder. The composites were prepared by injection molding. The MFC-reinforced PP composites containing both coupling agents MAPP and CPPA (combination system) showed extremely high mechanical strength compared with the MFC-reinforced composite containing only MAPP. The tensile strength of a 30 wt% MFC-PP composite containing the combination system was 27 % higher than that of the composite containing only MAPP, and more than 60 % higher than that of neat PP. In addition, the heat distortion temperature, under a 1.82-MPa flexural load, of the composite with the combination system was 17 °C higher than that of the composite with MAPP only, and 34 °C higher than that of neat PP. The anisotropy of the modulus and strength in the injection-molded MFC composites was lower than that of glass fiber-reinforced PP.  相似文献   

16.
Much of the current growth of wood-plastic composites (WPCs) is due to increased penetration into the decking market; therefore it has become imperative to understand the durability of WPCs in outdoor applications. In this study, wood flour filled high-density polyethylene (HDPE) composites were manufactured through either injection molding or extrusion. A set of extruded composites were also planed to remove the extruded surface. Composites were weathered in a xenon-arc weathering apparatus. Scanning electron microscopy (SEM) was used to characterize the morphology of the composite surface. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy was useful in showing the loss of wood particles from the surface after weathering. Contact angle was higher for the extruded and planed composites compared with the injection molded composites, and was shown using X-ray photoelectron spectroscopy (XPS) to be due to lubricant used as a processing aid.  相似文献   

17.
The flame retardation of polypropylene (PP) composites containing melamine phosphate (MP) and pentaerythritol phosphate (PEPA) was characterized by cone calorimeter. The formation mechanism of the char obtained from the combustion of the composites after cone calorimeter testing was studied by scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Raman diffusion. Results demonstrated that the PP composite containing MP and PEPA showed good flame retardancy. It had been found that the intumescent char could be principally divided into three parts, i.e. outer, middle and inner char layer, according to their different structures and components.  相似文献   

18.
The crystallization behavior of β-nucleated isotactic polypropylene (PP) composites filled with Kevlar fibers (KFs), as well as that of non-nucleated PP/KF composites for comparison, was investigated using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The morphological observations revealed that the KF addition could induce thick α-transcrystalline layer around their surfaces in PP/KF composites, while no obvious transcrystalline layer could be detected in β-nucleated PP/KF composites. Detailed DSC investigations suggested that for the PP/KF composites, the dominant modification was α-form, and the crystallization process of matrix was promoted by KF addition, as illustrated by faster isothermal crystallization rate, shorter induction time, and higher crystallization temperature. However, for β-nucleated PP/KF composites, the main modification was β-form, and their crystallization characteristics were independent of KF addition, indicating that the α-nucleating effect of KFs was absent in this system. The DSC results were confirmed by further rheological and wide angle X-ray diffraction (WAXD) studies. The mechanism of the formation of transcrystalline layer was also discussed.  相似文献   

19.
The preparation of composites by thermoforming of intermingled fibre slivers is an efficient method to receive high performance and lightweight materials. Cellulosic fibres have benefits like low density and sustainability but the sorption of water due to the high hydrophilicity of the cellulose requires attention. The swelling of the wet fibres changes the fibre-matrix adhesion and as a consequence, the mechanical strength of the composite is influenced negatively. In this study, the thermoplastic polypropylene was combined with lyocell fibres as reinforcement. Moisture sorption isotherms of cellulose/polypropylene composites were recorded as function of relative humidity. Additionally, the specific surface area was analysed by the Brunauer–Emmett–Teller model. It has been found, that the moisture sorption is influenced by the polypropylene (PP) ratio in the composites. At 60% relative humidity the moisture uptake of the lyocell fibres was reduced from 10.8 to 5.8% for lyocell embedded in a composite with 50% polypropylene. Besides the hysteresis between moisture sorption/desorption cycles was found to be proportional to the increased content of PP. The “Parallel Exponential Kinetics” (PEK) model was used to analyse the kinetics of moisture sorption of these composites in more detail. With the help of the PEK model the sorption/desorption kinetics were described by a fast and slow moisture sorption/desorption process. The capacity for rapid moisture sorption is reduced by the formation of PP layers on the lyocell surface. The share of slow moisture sorption increased with increasing PP content in the composite. The results support understanding of the interaction of water with cellulose containing composites.  相似文献   

20.
An intumescent system consisting of ammonium polyphosphate (APP) as an acid source and blowing agent, pentaerythritol (PER) as a carbonific agent and natural zeolite (clinoptilolite, Gördes II) as a synergistic agent was used in this study to enhance flame retardancy of polypropylene (FR-PP). Zeolite was incorporated into flame retardant formulation at four different concentrations (1, 2, 5, and 10 wt%) to investigate synergism with the flame retardant materials. Filler content was fixed at 30 wt% of total amounts of flame retardant PP composites. Zeolite and APP were treated with two different coupling agents namely, 3-(trimethoxysilyl)-1-propanethiol and (3-aminopropyl)-triethoxysilane for investigation of the influence of surface treatments on mechanical properties and flame retardant performance of composites. Maleic anhydride grafted polypropylene (MAPP) was used for making polypropylene hydrophilic. Flammability of FR-PP composites was measured by the determination of limiting oxygen index (LOI). The LOI values reached to a maximum value of 41% for mercapto silane treated APP:PER (2:1) PP composite containing 5 wt% zeolite. The tensile strength of composites was increased by the addition of MAPP and elongation at break of composites was increased with silane treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号