首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an initial attempt at describing poly(vinyl chloride) (PVC) thermal degradation through a semi-detailed and lumped kinetic model. A mechanism of 40 species and pseudocomponents (molecules and radicals) involved in about 250 reactions permits quite a good reproduction of the main characteristics of PVC degradation and volatilization. The presence of the two step mechanism—the first step of which corresponds to dehydrochlorination and the second to the tar release and residue char formation—are correctly predicted both in quantitative terms and in the temperature ranges. The model was validated by comparison with several thermo gravimetric analyses, both dynamic at different heating rates, and isothermal. When compared with the typical one step global apparent degradation models, the approach proposed here spans quite large operative ranges, especially when it comes to predicting product distributions. The initial results of these product predictions, even though quite preliminary, are encouraging and confirm the validity of the model.  相似文献   

2.
The miscibility, morphology, and thermal properties of poly(vinyl chloride) (PVC) blends with different concentrations of poly(methyl methacylate) (PMMA) have been studied. The interaction between the phases was studied by FTIR and by measuring the glass transition temperature (Tg) of the blends using differential scanning calorimetry. Distribution of the phases at different compositions was studied through scanning electron microscopy. The FTIR and SEM results show little interaction and gross phase separation. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of the first and second stage of degradation in PVC in the presence of PMMA were higher than the pure. The stabilization effect on PVC was found most significant with 10 wt% PMMA content in the PVC matrix. These results agree with the isothermal degradation studies using dehydrochlorination and UV-vis spectroscopic results carried out on these blends. Using multiple heating rate kinetics the activation energies of the degradation process in PVC and its blends have been reported.  相似文献   

3.
Thermal stability of poly(vinyl chloride)/poly(ethylene oxide) (PVC/PEO) blends has been investigated by thermogravimetric analysis (TGA) in dynamic and isothermal heating regime. PVC/PEO blends were prepared by hot-melt extrusion (HME). According to TG analysis, PEO decomposes in one stage, while PVC and PVC/PEO blends in two degradation stages. In order to evaluate the effect of PEO content on the thermal stability of PVC/PEO blends, different criteria were used. It was found that thermal stability of PVC/PEO blends depends on the blend composition. The interactions of blends components with their degradation products were confirmed. By using multiple heating rate kinetics the activation energies of the PVC/PEO blends thermal degradation were calculated by isoconversional integral Flynn–Wall–Ozawa and differential Friedman method. According to dependence of activation energy on degree of conversion the complexity of degradation processes was determined.  相似文献   

4.
Organomodified montmorillonite (OMMT) was prepared using cetylalkyl trimethyl amine bromide. OMMT and wood flour (WF) were surface-modified by silane coupling agent. They were melt-blended with polyvinyl chloride (PVC) and extruded into wood-plastic composite samples using one conical twin screw extruder. The effects of their contents on the composite mechanical properties were investigated. X-ray diffraction, transmission electron microscopy and scanning electron microscopy observed intercalation and dispersion of the OMMT. FTIR and X-ray photoelectron spectroscopy were used to analyze the silane-modification effects. The possible reaction mechanisms were proposed. After wood flour was modified by 1.5 phr silane, the impact strength and the tensile strength of wood flour-PVC composite were increased by 14.8% and 18.5%, respectively. Mechanical tests showed that the addition of OMMT did not enhance the untreated wood flour-PVC composites. However, adding 0.5% OMMT did improve the mechanical properties of the treated ones. The grafting improved the interfacial compatibility between components producing higher properties of the composites. Further addition of OMMT reinforced the composites. Too higher contents of silane and OMMT impaired some properties because of weak interfacial layer and higher concentrated stress. Cone calorimetry showed that the fire flame retardancy and smoke suppression of composites were strongly improved with the addition of OMMT.  相似文献   

5.
This study covers the synthesis of conducting polyindole (PIN) homopolymer, poly(vinyl chloride)/polyindole (PVC/PIN) composites, and preparation of their freestanding films. PIN and composites were synthesized chemically by radicalic mechanism using FeCl3 as an initiator. Films of PVC and PVC/PIN composites were prepared by casting on glass Petri dishes. Mechanical properties of films were examined by stress–strain experiments. From FTIR spectra of polymers, it was revealed that polymerization reaction occurred by 2–3 mechanism. The conductivities of polymers at different temperatures were also measured by four‐probe technique and found in the range 10?4 to 10?5 S cm?1. Magnetic properties of the polymers were analyzed by Gouy scale measurements and were found that their conducting mechanisms are of polaron and bipolaron natures. Thermal properties of polymers were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) and found that they had shown adequate thermal stability. X‐ray diffraction (XRD) spectra showed the amorphous nature of the polymers. Scanning electron microscopy (SEM) was used for microstructural analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1290–1298, 2010  相似文献   

6.
The effects of wood-flour on combustion and thermal degradation behaviors of PVC in wood-flour/poly (vinyl chloride) composites (WF-PVC) were investigated by using cone calorimeter (CONE) and TGA. The results show that thermal degradation behavior of WF-PVC composites has obvious characteristics of that of PVC. Interactions occur between wood-flour and PVC during the combustion and thermal degradation of WF-PVC composites. The thermal degradation of wood-flour can be accelerated by pure PVC. Moreover, the char formation can be raised by adding wood-flour to PVC. Compared with PVC at all flaming stage, when heat flux is kept at 50 kW m−2, the average heat release rate (av-HRR), the total heat release (THR), the total smoke production (TSP) and the average specific extinction area (av-SEA) of WF-PVC composites are respectively reduced by 44%, 9.2%, 25.8% and 29.9%. In WF-PVC composites, the wood-flour has remarkable effects on the properties of heat release and smoke release of PVC.  相似文献   

7.
The recycling of internal waste of poly(vinyl chloride) (PVC) and wood fibre-reinforced PVC composite was investigated and compared. Twenty extrusion-milling cycles were performed and the mechanical and thermal properties evaluated. This comparison provided evidence of the influence of the vegetable fibres on the thermo-mechanical degradation of the composite material. Up to five cycles, the composite properties remained stable. But after 10 cycles and especially at 20 cycles, the flexural strength increased, whereas the other mechanical properties remained almost constant. At the same time, a decrease of the degradation temperature revealed a deterioration of the molecular structure. The PVC properties remained constant, whereas a great increase in the impact strength was observed after 20 cycles without deterioration of the molecular structure. The different behaviours between the composite and the PVC were explained by the influence of the fibres, which accelerated the PVC degradation, characterized by dehydrochlorination followed by crosslinking reactions.  相似文献   

8.
The thermooxidative degradation of poly(vinyl chloride)/chlorinated polyethylene blends of different compositions was investigated by means of isothermal thermogravimetry in flowing atmosphere of synthetic air at temperatures 240–270 °C. The main degradation processes are dehydrochlorination of PVC and CPE. For calculation of the apparent activation energy and apparent pre-exponential factor two kinetic methods were used: isoconversional method and Prout–Tompkins method. True compensation dependency between Arrhenius parameters, obtained using Prout–Tompkins model, was found. Calculated kinetic parameters of isothermal thermooxidative degradation are close to those from non-isothermal degradation and confirm the assumption of the main degradation process in PVC/CPE blends.  相似文献   

9.
Relationship between the structure and the thermal stability of poly(vinyl chloride) synthesized by various polymerization catalysts was investigated. The Cp∗Ti(OPh)/MAO catalyst, n-butyllithium (n-BuLi), the Cu(0)/TREN/CHBr3/DMSO catalyst, benzoyl peroxide/N,N-dimethylaniline (BPO/DMA), 2,2’-azobis(2.4-dimethylvaleronitrile) (V-65) was used as the polymerization catalyst. The temperature of 5% weight loss was in the following order; Cp∗Ti(OPh)3/MAO (280 °C) > n-BuLi (264 °C) > V-65 (249 °C) > Cu(0)/TREN/CHBr3/DMSO (215 °C) > BPO/DMA (209 °C), and the rate of weight loss was the reverse order of T−5% in the isothermal degradation of the polymer from 160 °C to 220 °C. The T−5% value of the polymer obtained from the polymerization with Cp∗Ti(OPh)3/MAO catalyst increased with an increase of the molecular weight of PVC, in contrast to that PVC obtained with the radical initiator did not depend on the molecular weight of the polymer. The T−5% value of PVC macromonomer was 285 °C, while the temperature of non-functionalized PVC was 262 °C, respectively. It is clear that the PVC macromonomer had a good thermal stability regardless of low-molecular weight.  相似文献   

10.
杨杰 《高分子科学》2010,28(1):85-91
<正>The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone(PASS/NMP) crystal solvate was studied by thermogravimetric analysis(TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer.The activation energy of the solid state process was determined using Kissinger's method,which does not require knowledge of the reaction mechanism(RM),to be 174.18 kJ/mol which was lower than that for pure PASS(E=214 kJ/mol).The study of master curves together with interpretation of integral methods,allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated R_n type,which is a solid-state process based on a phase boundary controlled reaction,in the conversion range considered.Whereas,the pure PASS follows a decelerated D_n thermodegradation mechanism in the same conversion range.  相似文献   

11.
Thermal diffusivity, heat capacity, and density of polyvinyl chloride/polycaprolactone (PVC/PCL) blends were measured by the laser flash method, DSC, and pycnometry, respectively. The thermal conductivity of the PVC/PCL blends was determined from the results. The miscibility of the blend and crystallinity of PCL were determined by DSC. The effect of blend structure on thermal conductivity is discussed. The phase compositions of the PVC/PCL blends are of three types depending on PCL content: i.e., up to 33%, from 33 to 70%, and above 70% PCL by weight. Thermal conductivity, thermal diffusivity, and heat capacity of the PVC/PCL blends are strongly affected by the phase composition of the blend, which changes in a complicated way with PCL content. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004  相似文献   

13.
Different chelating agents such as poly(ethylene glycol), propylene glycol monooctadecanoate and palm oil were used for modification of the surface-treated montmorillonite (MMT). The work also included the development of a technique for mixing chelating agents with MMTs using different methods and different proportions of MMT/chelating agent/ethanol. Evaluation of the result of mixing was performed by thermogravimetric analysis, X-ray diffraction and high-resolution scanning electron microscopy (HR-SEM). The results showed that the chelating agents used were intercalated in MMT, increasing the interlayer spacing. The OMMT was used in the manufacture of composites with rigid PVC using a microcompounder. The master batch concept turned out to be promising in terms of dispersion and delamination of clay, as observed in HR-SEM photographs. However, despite good dispersion and exfoliation of MMT, poor compatibility between clay platelets and PVC matrix remains to be solved to enable full exploitation of its engineering potential. Despite this drawback, good thermal stability and mechanical properties have already been achieved.  相似文献   

14.
张书华  王成 《高分子科学》2016,34(5):542-551
MgAl-LDH(layered double hydroxides) were prepared with CO(NH_2)_2, NH_4 Cl and NH_3·H_2O by the coprecipitation method, respectively. Corresponding composite membranes were prepared by the coating method. LDHs were characterized by WAXS, CO_2-TPD and SEM. The morphology of the PVC/LDHs composite membranes were characterized by means of SEM. The thermal stability of the membranes was analyzed by air aging box and TGA-FTIR. The SEM results show that nano-particles can be compatible with poly(vinyl chloride)(PVC) matrix homogeneously by the stirring-ultrasound blend method with two steps. Furthermore, the air aging box results proved that MgAl-CO(NH_2)_2-LDH has the best effect on thermal stability of PVC. TGA-FTIR results show that MgAl-CO(NH_2)_2-LDH could adsorb more HCl that resulted from the degradation of PVC and improve the pyrolysis temperature of the first degradation stage by 15 K compared with PVC.  相似文献   

15.
In this study, poly(vinyl chloride) (PVC), polyindole (PIN), and PVC/PIN conducting composites having five different compositions were used. Particle sizes, densities, dielectric constants, and sedimentation ratios of the materials were determined. The zeta‐potentials of the samples were measured in aqueous and nonaqueous (silicone oil [SO]) media. The dispersions prepared in SO were subjected to external electric field strength, and their electrorheological properties were investigated. Then the effects of dispersed particle volume fraction, shear rate, external electric field strength, frequency, and temperature onto electrorheological activities of the dispersions were examined. Further, creep and creep‐recovery tests were applied to the PIN/SO and PVC/PIN/SO dispersions, and reversible viscoelastic deformations were observed. Finally, the vibration damping capacity of PVC (66%)/PIN (34%)/SO dispersion system was tested by using an automobile shock absorber. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The nature and the extent of degradation of poly(hydroxy ether of bisphenol-A) phenoxy resin were analysed by thermogravimetry (TGA/DTGA) under nitrogen and air atmosphere. Decomposition kinetics were elucidated according to Flynn-Wall-Ozawa, Friedman and Kissinger methods. The evolved gases during degradation were inspected by a thermogravimetry analyser coupled with Fourier Transform Infrared Spectrometer (TGA/FTIR) and also with a TGA coupled to a Mass Spectrometer (TGA/MS). Mass spectra showed that chemical species evolved in phenoxy decomposition in air were very similar to those assigned from degradation in nitrogen (water, methane, CO, CO2, phenol, acetone, etc.). However, these species appear in different amount and at different temperatures in both atmospheres. FTIR analysis of the evolved products showed that water and methane were the beginning decomposition products, indicating that decomposition is initiated by dehydration and cleavage of C-CH3 bond in the bisphenol-A unit of phenoxy resin. After this initial stage, random chain scission is the main degradation pathway. Nevertheless, in air atmosphere, previously the complete decomposition of the phenoxy obtaining fundamentally CO2, and water, the formation of an insulated surface layer of crosslinked structures has been proposed.  相似文献   

17.
Most physical properties of a wood plastic composite (WPC) with poly(vinyl chloride) (PVC) matrix are lower than those of corresponding neat PVC because of poor interfacial adhesion between hydrophobic PVC and hydrophilic wood. In this study, to improve the interfacial adhesion, wood flour was pre‐treated with N‐2(aminoethyl)‐3‐aminopropyltrimethoxysilane, and the surface modification was characterized and confirmed by X‐ray photoelectron spectroscopy (XPS). Furthermore, to improve the performance of PVC/wood composites, a type of organoclay was added as nanofiller. PVC/wood/clay composites were prepared by melt blending a heavy metal‐free PVC compound, the aminosilane‐treated wood flour, and the organoclay, and their physical properties were tested by universal testing machine and thermal gravimetric analyzer. X‐ray diffractometer (XRD) analyses of the WPCs showed an intercalated structure of the organoclay. The scanning electron microscope images for the fracture surfaces of the WPCs confirmed the positive effect of the aminosilane pre‐treatment by showing reduced debonding of wood flour from the PVC matrix. The performance of the WPCs was improved by the aminosilane pre‐treatment of the wood flour and the organoclay. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this research was to study the effect of different intercalants on the thermal degradation/dehydrochlorination of poly(vinyl chloride) (PVC). PVC nanocomposites were prepared containing 2 phr of montmorillonite clay. The montmorillonite was treated with different organic intercalants and analysed by thermogravimetric analysis and X-ray diffraction. All intercalants were found to intercalate the clay. The nanocomposites were prepared on a two-roll mill and pressed into 0.7 mm thick plates. The degradation was analysed by yellowness index, Congo red test and UV–visible spectroscopy. All cationic intercalants were found to accelerate the dehydrochlorination of PVC whereas the non-ionic did not affect thermal degradation. On the other hand, some non-ionic intercalants showed poor dispersion.  相似文献   

19.
Four saturated polyesters poly(hexamethylene adipate), poly(ethylene adipate), poly(hexamethylene terephthalate) and poly(ethylene terephthalate) were prepared. The resulting materials were characterized by IR and 1H NMR, end group analysis and gel permeation chromatography. The effect of blending these polyesters (5 and 10%) with poly(vinyl chloride) (PVC) in the melt was investigated in terms of changes in the thermal behaviour of PVC by studying the weight loss after 50 min at 180 °C, colour changes of the blend before and after aging for one week at 90 °C, the variation in glass transition temperature and the initial decomposition temperature. The results gave proof for the stabilizing role played by the investigated polyesters against the thermal degradation of PVC. The best results are obtained when PVC is mixed with 5% aliphatic polyesters rather than with aromatic ones. This is well illustrated not only from the increase in the initial decomposition temperature (IDT), but also from the decrease of % weight loss and from the lower extent of discolouration of PVC, which is a demand for the application of the polymer. It was also found that blending PVC with 5% of the four investigated polyesters before and after aging for one week at 90 °C gave better mechanical properties even than that of the unaged PVC blank.  相似文献   

20.
This work is based on the preparation of composites of poly(methylmethacrylate) with zinc oxide nanoparticles synthesized by solution casting method.

Chloroform cast poly(methylmethacrylate) films containing different amounts of ZnO nanoparticles were characterized by XRD, SEM, UV-vis spectroscopy, FTIR spectroscopy and TGA.

The results show that ZnO nanoparticles with a size of 24?nm were fairly dispersed in the polymer matrix. The obtained material had UV shielding capability with optical transparency. Thermal characterization shows that, the nanocomposites were more thermally stable than pure PMMA presenting three degradation steps. Apparent kinetic parameters were determined for each degradation step using peak fitting methodology. According to activation energies, ZnO particles affect simultaneously but oppositely the kinetics of underlying degradation reactions. Thermal stability of the PMMA/ZnO nanocomposites was the result of the overall balance in favor of the inhibiting effect of ZnO.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号