首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Summary: Dielectric spectroscopy in the frequency domain and thermally stimulated depolarization currents techniques, covering together a broad frequency range (10−4–109 Hz), were employed to investigate molecular dynamics in relation to structure and morphology in polymeric nanocomposites. Several systems were investigated, three of them with the same epoxy resin matrix and different inclusions (modified smectite clay, conducting carbon nanoparticles and diamond nanoparticles) and two with silica nanofiller (styrene-butadiene rubber/silica and polyimide/silica nanocomposites). Special attention was paid to the investigation of segmental dynamics associated with the glass transition of the polymer matrix, in combination also with differential scanning calorimetry measurements. Effects of nanoparticles on local (secondary) relaxations and on the overall dielectric behavior were, however, also investigated. Several interesting results were obtained and discussed for each of the particular systems. Two opposite effects seem to be common to the nanocomposites studied and dominate their behavior: (1) immobilization/reduction of mobility of a fraction of the chains at the interface to the inorganic nanoparticles, due to chemical or physical bonds with the particles, and (2) loosened molecular packing of the chains, due to tethering and geometrical confinement, resulting in an increase of free volume and of molecular mobility.  相似文献   

2.
This paper addresses the effects of operating variables on mechanical properties of polyurethane/clay nanocomposites including tensile strength, abrasion resistance, and hardness. The variables were prepolymer type, clay cation, clay content, and prepolymer–clay mixing time. The experiments were carried out based on the design of experiments using Taguchi methods. The nanocomposites were synthesized via in situ polymerization starting from two different types of prepolymers (polyether‐ and polyester‐types of polyol reacted with toluene diisocyanate), and methylene‐bis‐ortho‐chloroanilline (MOCA) as a chain extender/hardener. Montmorillonite with three types of cation (Na+, alkyl ammonium ion, and MOCA) were examined. Among the parameters studied, prepolymer type and clay cation have the most significant effects on mechanical properties. Polyester nanocomposites showed larger improvements in mechanical properties compared to polyether materials due to higher shear forces exerted by polymer matrix on clay aggregates during polymer–clay mixing. The original MMT with Na+ cation results in weak improvements in mechanical properties compared to organoclays. It is observed that the stress and elongation at break, and abrasion resistance of the nanocomposite samples can be optimized with 1.5% of clay loading. The morphology and chemical structure of the optimum sample were examined by X‐ray diffraction and FT‐IR spectroscopy, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
PLA and its nanocomposite films based on modified montmorillonite (CLO30B) or fluorohectorite (SOM MEE) and unmodified sepiolite (SEPS9) were processed at a clay loading of 5 wt% and hydrolytically degraded at 37 and 58 °C in a pH 7.0 phosphate-buffered solution. An effective hydrolytic degradation for neat PLA and nanocomposites was obtained at both temperatures of degradation, with higher extent at 58 °C due to more extensive micro-structural changes and molecular rearrangements, allowing a higher water absorption into the polymer matrix.The addition of CLO30B and SEPS9 delayed the degradation of PLA at 37 °C due to their inducing PLA crystallization effect and/or to their high water uptake reducing the amount of water available for polymer matrix hydrolysis. The presence of SOM MEE also induced polymer crystallization, but it was also found to catalyze hydrolysis of PLA. Concerning hydrolysis at 58 °C, the presence of any nanoparticle did not significantly affect the degradation trend of PLA, achieving similar molecular weight decreases for all the studied materials. This was related to the easy access of water molecules to the bulk material at this temperature, minimizing the effect of polymer crystallinity clay nature and aspect ratio on the polymer degradation.  相似文献   

4.
sPS/PA6/蒙脱土纳米复合材料的制备与性能   总被引:4,自引:3,他引:4  
讨论了间规聚苯乙烯 (sPS) 尼龙 6(PA6) 磺化间规聚苯乙烯 (SsPS H) 蒙脱土纳米复合材料的制备技术和新材料的结构与性能特征 .蒙脱土经层间改性处理后 (MTN) ,可分别将SsPS H和aPS(无规聚苯乙烯 )插入其纳米层间 ,制备出插层型纳米复合物MTN SsPS和MTN aPS .在sPS/PA6/SsPS H三组分共混体系中加入MTN SsPS或MTN aPS ,进行四组分熔融共混即可制备出sPS/PA6/SsPS H/蒙脱土纳米复合材料 .TEM测定证实了蒙脱土在基体中的层厚分布约为 5 0nm .此外 ,采用DSC、DMA、XRD及力学性能测试仪等现代分析方法对sPS/PA6/SsPS H/蒙脱土纳米复合材料的结构与性能进行了详细研究 .研究结果表明这种纳米复合材料具有优良的综合性能  相似文献   

5.
Organoclays with various contents of hydroxyl groups and absorbed ammonium were prepared and compounded with poly(ethylene terephthalate) (PET), forming PET/clay nanocomposites via melt extrusion. Dilute solution viscosity techniques were used to evaluate the level of molecular weight of PET/clay nanocomposites. Actually, a significant reduction in PET molecular weight was observed. The level of degradation depended on both the clay structure and surfactant chemistry in organoclays. The composites, based on clay with larger amount of hydroxyl groups on the edge of clay platelets, experienced much more degradation, because the hydroxyl groups acted as Brønsted acidic sites to accelerate polymer degradation. Furthermore, organoclays with different amounts of absorbed ammonium led to different extents of polymer degradation, depending upon the acidic sites produced by the Hofmann elimination reaction of ammonium. In addition, the composite with better clay dispersion state, which was considered as an increasing amount of clay surface and ammonium exposed to the PET matrix, experienced polymer degradation more seriously. To compensate for polymer degradation during melt extrusion, pyromellitic dianhydride (PMDA) was used as chain extender to increase the intrinsic viscosity of polymer matrix; more importantly, the addition of PMDA had little influence on the clay exfoliation state in PET/clay nanocomposites.  相似文献   

6.
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.  相似文献   

7.
This paper describes a multiscale approach used to model polymer clay nanocomposites (PCNs) based on a new altered phase concept. Constant-force steered molecular dynamics (SMD) is used to evaluate nanomechanical properties of the constituents of intercalated clay units in PCNs, which were used in the finite element model. Atomic force microscopy and nanoindentation techniques provided additional input to the finite element method (FEM) model. FEM is used to construct a representative PCN model that simulates the composite response of intercalated clay units and the surrounding polymer matrix. From our simulations we conclude that, in order to accurately predict mechanical response of PCNs, it is necessary to take into account the molecular-level interactions between constituents of PCN, which are responsible for the enhanced nanomechanical properties of PCNs. This conclusion is supported by our previous finding that there is a change in crystallinity of polymeric phase due to the influence of intercalated clay units. The extent of altered polymeric phase is obtained from observations of a zone of the altered polymeric phase surrounding intercalated clay units in the "phase image" of PCN surface, obtained using an atomic force microscope (AFM). An accurate FEM model of PCN is constructed that incorporates the zone of the altered polymer. This model is used to estimate elastic modulus of the altered polymer. The estimated elastic modulus for the altered polymer is 4 to 5 times greater than that of pure polymer. This study indicates that it is necessary to take into account molecular interactions between constituents in nanocomposites due to the presence of altered phases, and furthermore provides us with a new direction for the modeling and design of nanocomposites.  相似文献   

8.
In present study, the synthesis, characterization, and thermal properties of novel coumarin cyclic polymer poly(3-benzoyl coumarin-7-yl-methacrylate) polymer/montmorillonite based nanocomposites were performed. At the characterizations of nanomaterials FTIR, XRD, DSC and TGA techniques were used. It was determined from XRD measurements that the morphologies of nanocomposites were shifted from exfoliated type to intercalated type when the clay ratio in the coumarin polymer matrix was increased from 1 to 5% level. From DSC analysis, a partial increasing at the glass transition temperatures of nanocomposites was observed related to clay ratios. On the other hand, a positive correlation was observed between the clay ratio and thermal stability of nanomaterials from TGA analysis. Also, the increasing of decomposition temperatures of nanocomposites according to homopolymer was recorded to be 9–17°C.  相似文献   

9.
In this paper, two polyurethane/clay nanocomposite systems with crosslinked structure were synthesized via in situ polymerization of a polyether‐ as well as a polyester‐based prepolymer with methylene‐bis‐ortho‐chloroanilline (MOCA). Two types of modified clays with different organic modifiers were used in order to see the effect of compatibility between polymer matrix and clays on elastic modulus of nanocomposites. The morphology and the dispersion of clay layers in polyurethanes have been characterized by X‐ray diffraction (XRD) and microscopic techniques. The changes of elastic modulus of nanocomposites with clay content were examined and compared with those predicted by some conventional composite models. The results showed a reasonable fitting of experimental and theoretical values only at very low clay contents. As the clay content exceeds 1.5 wt% in this system, a reduction in elastic modulus was experimentally observed due to insufficient dispersion degree of silicate layers throughout the crosslinked matrix. This behavior was not predicted with the conventional composite theories. A new model on the basis of Wu model was then developed in order to predict the reduction of elastic modulus at various clay contents in crosslinked PU matrix. This model fitted reasonably the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT‐Si) supported catalyst, was developed. MT‐Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT‐Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay–silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 941–949, 2004  相似文献   

11.
Size effects in a system composed of a polymer matrix with a single silica nanoparticle are studied using molecular dynamics and surface-enhanced continuum approaches. The dependence of the composite’s mechanical properties on the nanoparticle’s radius was examined. Mean values of the elastic moduli obtained using molecular dynamics were found to be lower than those of the polystyrene matrix alone. The surface-enhanced continuum theory produced a satisfactory fit of macroscopic stresses developing during relaxation due to the interface tension and uniaxial deformation. Neither analytical nor finite-element solutions correlated well with the size-effect in elastic moduli predicted by the molecular dynamics simulations.  相似文献   

12.
Macroscopic properties of polymer nanocomposites depend on the microscopic composite morphology of the constituent nanoparticles and polymer matrix. One way to control the spatial arrangement of the nanoparticles in the polymer matrix is by grafting the nanoparticle surfaces with polymers that can tune the effective interparticle interactions in the polymer matrix. A fundamental understanding of how graft and matrix polymer chemistries and molecular weight, grafting density, and nanoparticle size, and chemistry affect interparticle interactions is needed to design the appropriate polymer ligands to achieve the target morphology. Theory and simulations have proven to be useful tools in this regard due to their ability to link molecular level interactions to the morphology. In this feature article, we present our recent theory and simulation studies of polymer grafted nanoparticles with chemical and physical heterogeneity in grafts to calculate the effective interactions and morphology as a function of chemistry, molecular weights, grafting densities, and so forth. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

13.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

14.
Effects of pH on mechanical properties as well as morphological studies of sol–gel derived in situ silica in polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposites are reported. In particular, a range of acid concentrations was investigated. These nanocomposites were prepared by solution casting technique and tetraethoxysilane (TEOS) was used as the silica precursor. The prepared nanocomposites were characterized using tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test indicated that the highest mechanical strength was at 30% TEOS added for the nanocomposite prepared at pH 2.0. At pH 1.0 and 1.5 the maximum tensile strength reading was at 20% TEOS added with value of 24.3 and 24.5 MPa, respectively. SEM and TEM revealed the dispersion of silica particles in the polymer matrix. For nanocomposites prepared at pH 1.0 and 1.5, the silica particles were finely dispersed with the average size of 60 nm until 20% TEOS added. Meanwhile for nanocomposite prepared at pH 2.0, silica particles were homogenously distributed in the polymer matrix with average diameter of 30 nm until 30% TEOS and agglomerated after 30% TEOS loading.  相似文献   

15.
This study aims in the examination of a new class of materials named polymer layered silicate nanocomposites. In our case, composites are usually combinations of polypropylene matrix with solid mineral reinforcements named silicates (e,g. montmorillonite, a natural clay). In this study, two complementary techniques used to characterize nanocomposites. Fourier transform infrared spectroscopy (FT-IR) both in transmission and attenuated total reflectance (ATR) modes combined with X-ray photoelectron spectroscopy (XPS).  相似文献   

16.
A simple approach to the synthesis of clay-silica nanocomposites is presented. Silica nanorings on the edges of clay sheets were synthesized by using a modified St?ber method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and fluorescence spectroscopy were employed to characterize the prepared nanocomposites. TEM results show that the average size of the nanorings increases with the growth of silica. XRD results indicate that the layered structures of clay can be found in the nanocomposite and the growth of silica nanorings expands the d spacing of clay platelets. The mechanism of the formation of the nanorings is discussed. The preparation of polystyrene (PS) brushes on the surfaces of silica nanorings by atom-transfer radical polymerization is also reported. The polymer nanocomposite with negatively charged clay surfaces and hydrophobic polymer brushes on the silica nanorings can be used in Pickering emulsions, and PS colloidal particles with clay-silica on the surfaces were prepared.  相似文献   

17.
The confinement effects introduced by nanoparticles have been reported to influence the phase behaviors thus the properties of polymer nanocomposites. In this study, molecular dynamics and crystallization behaviors of polyethylene (PE) composited with three types of silica (SiO2) nanoparticles, namely unmodified SiO2, hydrophobically modified SiO2, SiO2‐APTES (3‐aminopropyltriethoxysilane) and SiO2‐PTES (n‐propyltriethoxysilane), were systematically investigated via a combination of DSC, XRD and 1H solid‐state NMR measurements. The suppressions in crystallization and chain mobilities of PE rank in the order of unmodified SiO2 < SiO2‐APTES < SiO2‐PTES due to the increasing interfacial interactions between PE and SiO2 nanoparticles. Additionally, independent of polymer–nanoparticle interactions, a silica network forms for all three kinds of nanocomposites when SiO2 content reaches 83 wt %. The mobilities of polymer chains are severely restricted by such a percolated network structure, leading to a turning point in the crystallization ability of nanocomposites and a new crystallization peak at 45 °C lower than that of pure PE. The synergetic effects of interfacial interactions and filler network on polymer crystallization have been thoroughly studied in this work, which will provide guidance on modifying and designing nanocomposites with controlled properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 498–505  相似文献   

18.
聚合物基粘土纳米复合材料的流变行为研究   总被引:7,自引:0,他引:7  
聚合物基粘土纳米复合材料具有与常规颗粒填充体系类似的流变特性 :在整个频率范围内 ,储能模量和损耗模量均随粘土含量的增加而变高 ,其频率依赖性会表现出非未端行为 :且当粘土含量超过临界值以后 ,储能模量会在低频区表现出似固体的平台发展。但与之不同的是前者在低粘土含量的条件下 (<10 % (wt) )就会表现出似固体行为或非末端行为。这些流变特性还会受到粘土的径厚比、化学特性、聚合物基体的分子结构参数和粘土与基体间的相互作用强度等因素的影响。聚合物基粘土纳米复合材料的流变行为是与其微观结构的形成和演化以及聚合物分子链在特定环境下的粘弹松弛过程紧密联系在一起的。本文综述了插层型、剥离型和聚合物分子链一端受限剥离型聚合物基粘土纳米复合材料在力场作用下的流变特性和粘弹松弛机理方面的研究进展。  相似文献   

19.
Polyethylene(PE)/clay nanocomposites have been successfully prepared by in situ polymerization with an intercalation catalyst titanium-montmorillonite (Ti-MMT) and analyzed by X-ray diffraction analysis (XRD), Fourier transform infrared analysis (FT-IR), Transmission electron microscopy (TEM), differentail scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and tensile testing. XRD and TEM indicate that the clay is exfoliated into nanometer size and disorderedly dispersed in the PE matrix, and the PE crystallinity of PE/clay nanocomposite declines to 15∼30%. Compared with pure PE, PE/clay nanocomposites behave higher thermal, physical and mechanical properties; the layer structure of the clay decreases the polymerization activity and produce polymer with a high molecular weight. For PE/clay nanocomposites, the highest tensile strength of 33.4 MPa and Young's modulus of 477.4 MPa has been achieved when clay content is 7.7 wt %. The maximum thermal decomposition temperature is up to 110 °C higher, but the thermal decomposition temperature of the PE/clay nanocomposites decreases with the increases of the clay contents in the PE matrix.  相似文献   

20.
Poly(methyl methacrylate) (PMMA)/zinc oxide (ZnO) or carbazole polymer (PCEM)/ZnO nanocomposites, which are composed of high molecular weight PMMA or PCEM with narrow molecular weight distributions and ZnO nanoparticles, were successfully prepared by atom transfer radical polymerization (ATRP) initiated by 2-bromo-2-methylpropionyl (BMP) group (ZnBM) introduced onto the ZnO nanoparticle surfaces. Introduction of the BMP group onto the ZnO surfaces was achieved by esterification of OH group of the ZnO surfaces. The chemically attached OH group-having ZnO nanoparticles (ZnHM) were fabricated by sol-gel reaction from zinc acetate dihydrate, followed by treatment of the ZnO nanoparticles with 2-hydroxypropionic acid (HPA). The ZnHM nanoparticles showed one UV absorption and two emission bands: UV emission peak and broad visible emission band, while the ZnBM exhibited broad UV absorption and no emission spectra. The PMMA/ZnO nanocomposites displayed UV absorption and photoluminescent (PL) band with blue emission on the basis of the ZnHM nanoparticles, where the ZnO nanoparticles dispersed homogeneously in the PMMA matrix. The PCEM/ZnO nanocomposites depicted UV emission peak due to the carbazole unit in the UV range, but no visible emission. Thermal properties of the PMMA/ZnO nanocomposites were improved by dispersion of the ZnO nanoparticles into the PMMA, but the PCEM/ZnO nanocomposites showed no improvement of the thermal properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号