首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA). For this purpose thermogravimetry and direct pyrolysis mass spectrometry analyses were used. Release of diethylphosphinic acid, melamine, and several products involving Al-O-P and N-P linkages were detected from the organophosphorus additive containing aluminium diethylphosphinate, melamine polyphosphate and zinc borate. When incorporated in PMMA, reactions of diethylphosphinic acid, melamine and/or their derivatives with the ester group affected the decomposition pathways by generation of (C2H5)2POOCH3 and HNCO at relatively high temperatures.  相似文献   

2.
This study explores whether nanoparticles incorporated in polymers always act as synergists of conventional flame-retardant additives. For this purpose, two different filler nanoparticles, namely organically modified layered-silicate clay minerals or nanoclays and multi-walled carbon nanotubes, were incorporated in poly(methyl methacrylate) filled with an organophosphorus flame-retardant that acts through intumescence. Effective dispersion techniques specific to each nanoparticle were utilized and prepared samples were thoroughly characterized for their nanocomposite morphologies. Nanoclays were shown to outperform carbon nanotubes in respect of improving the fire properties of intumescent formulations assessed by cone calorimeter analysis. An intriguing explanation for the observed behaviour was the restriction of intumescence by strong carbon nanotube networks formed on the flaming surfaces during combustion contrary to enhanced intumescent chars by nanoclays. Carbon nanotubes surpassed nanoclays considering the thermal stability of intumescent formulations in thermogravimetry whereas mechanical properties were significantly superior with nanoclays to those with carbon nanotubes.  相似文献   

3.
Synergism on fire properties has been investigated between nano-sized hydrophobic oxides (alumina and silica) and ammonium polyphosphate (AP) flame-retardant additive. Thermal degradation of mixed additives (50% w/w) showed the impact of oxides on AP degradation. The effect of modified nanoparticles was compared with corresponding hydrophilic oxide as regards thermal and fire behaviour. The nanocomposites prepared by melt-blending were evaluated by thermogravimetric analysis and cone calorimetry measurements. Residues were characterized by ATR-FTIR spectroscopy, X-ray diffraction and SEM-EDX experiments. A noteworthy decrease of peak of heat release rate and smoke opacity as well as an increase of LOI were noticed with hydrophobic silica combined with AP both in PMMA and PS. This flame-retardant behaviour was ascribed mainly to the formation of a specific silicon metaphosphate (SiP2O7) crystalline phase which contributes to promote charring and an efficient insulating layer.  相似文献   

4.
The size effect of silica nanoparticles (SiO2) on thermal decomposition of poly(methylmethacrylate) (PMMA) was investigated by the controlled rate thermogravimetry. Thermal degradation temperature of PMMA–SiO2 composites depended on both fraction and size of SiO2, the thermal degradation temperature of 23 nm (diameter) SiO2–PMMA (6.1 wt%) was 13.5 °C higher than that of PMMA. The thermal stabilities of 17 nm SiO2–PMMA (3.2 wt%) and 13 nm SiO2–PMMA (4.8 wt%) were 21 and 23 °C, respectively, higher than that of PMMA without SiO2. The degree of degradation improvement was increased linearly with the surface area of SiO2. The number of surface hydroxyl group in unit volume of SiO2 particle increased with increasing the specific surface area of SiO2, and the interaction between hydroxide group of SiO2 and carbonyl group of PMMA had an important role to improve the thermal stability of PMMA.  相似文献   

5.
Intumescent flame-retardant textiles have been developed from flame-retardant microcapsules. The work is based on the synthesis of different melamine-formaldehyde microcapsules containing di-ammonium hydrogen phosphate and/or poly(1,6-hexamethylene adipate) by in-situ polymerisation. Two types of shell have been produced, composed of melamine formaldehyde or melamine formaldehyde-poly(hexamethylene adipate glycol). The microcapsules obtained were melt-compounded at 5%-wt with an isotactic polypropylene matrix using a twin-screw extruder, and multi-filaments have afterwards been spun from the various extrudates. The manufactured fibres were mechanically characterized by measuring their tensile properties, and their thermal properties were investigated by DSC and TGA. Finally, knitted fabrics were processed from the multi-filaments: their flame-retardant properties were evaluated by performing a fire test with a cone calorimeter, and their thermal conductivity measured with a Hot Disk. The different thermal behaviours are discussed in terms of the influence of system formulation on the overall thermal degradation, due to interactions between the different components of the flame-retardant microcapsules. The results showed that for one of the structures, an intrinsic intumescent flame-retardant system has been achieved.  相似文献   

6.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

7.
The thermal and fire properties of PMMA modified with various loadings of melamine or zinc aluminum undecenoate LDH were evaluated using TGA, DTA and cone calorimetry. The additives were characterized by X-ray diffraction, TGA, FT-IR and elemental analysis. While the two additives are very effective with this polymer, a higher loading of melamine (30%) is required to reach a good reduction in PHRR (47%) relative to the pure polymer, while with the LDH, 10% loading is enough to obtain a similar reduction. The combinations of these additives in PMMA reveal that the time to PHRR and the amount of smoke produced are the key differences, with melamine increasing the first parameter and leading to less smoke production relative to LDH-rich PMMA systems at similar total additive loadings. Analysis of the residue shows that melamine is completely lost during combustion while the LDH forms ZnO and ZnAl2O4.  相似文献   

8.
Various amounts of predispersed multi-wall carbon nanotubes (MWCNT) were mixed with natural rubber (NR), with and without carbon black (CB), for preparing MWCNT-filled NR (NC) and MWCNT/CB-filled NR (NH) vulcanizates. All NH vulcanizates contained 30 phr CB and the amount of MWCNT for both NC and NH was varied from 0 to 8 phr. Helium ion microscopy (HIM) and FE-SEM images showed that MWCNT in the NH was dispersed much better than in the NC. Additionally, the well dispersed CB and MWCNT in the NH functioned synergistically in promoting an increase in longitudinal crack growth, leading to enhancement of edge-cut tensile strength (CTS) with increasing MWCNT loading. In contrast, all NC specimens ruptured in a simple lateral direction relating to their lower CTS. Results also revealed that abrasion resistance of the NH was not significantly changed with increasing MWCNT, whereas that of the NC increased. Nevertheless, abrasion resistance of both vulcanizates showed good correlation with the average value of ridge spacing on their abraded surfaces. It was also found that tensile strength of the NH was almost unchanged when the MWCNT loading was increased because the reinforcement by CB predominates over the MWCNT. However, 100% modulus and hardness of both NC and NH increased with increasing MWCNT content.  相似文献   

9.
Since a few years ago, a topic of interest consists in developing composites filled with nanofillers to improve thermal degradation and flammability property of poly(methyl methacrylate) (PMMA). In the present work, the effects of ZnO nanoparticles and organo-modified montmorillonite (OMMT) on the thermal degradation of PMMA were investigated by thermogravimetric analysis (TGA). PMMA-ZnO and PMMA-OMMT nanocomposites were prepared by melt blending with different (2, 5, and 10 wt%) loadings. SEM and TEM analyses of nanocomposites were performed in order to investigate the dispersion of nanofillers in the matrix. According to TGA results, the addition of ZnO nanoparticles does not affect the thermal degradation of PMMA under an inert atmosphere. However, in an oxidative atmosphere, two contrary effects were observed, a catalytic effect at lower concentration of ZnO in the PMMA matrix and a stabilizing effect when the ZnO concentration is higher (10 wt%). In contrast, the presence of OMMT stabilizes the thermal degradation of PMMA whatever be the atmosphere. Differential thermal analysis (DTA) curves showed surprising results, because a dramatic change of exothermic reaction of the PMMA degradation process to an endothermic reaction was observed only in the case of OMMT. During the degradation of PMMA-ZnO nanocomposites, pyrolysis-gas chromatography coupled to mass spectrometer (Py-GC/MS) showed an increase in the formation of methanol and methacrylic acid while a decrease in the formation of propanoic acid methyl ester occurred. In the case of PMMA-OMMT systems, a very significant reduction in the quantity of all these degradation products of PMMA was observed with increasing OMMT concentration. It is also noted that during PMMA-OMMT degradation less energy was released as the decomposition is an endothermic reaction and the material was cooled.  相似文献   

10.
The influence of magnesium dihydroxide (MDH) nanoparticles on thermal degradation and fire behavior of poly(methyl methacrylate) (PMMA) has been investigated by thermogravimetric analysis (TGA), cone calorimeter, and pyrolysis‐combustion flow calorimeter (PCFC) tests, respectively. MDH nanoparticles with either lamellar or fibrous shape have been synthesized via a sol‐gel technique and characterized by transmission electron microscopy (TEM) and X‐ray diffraction analysis. PMMA–MDH nanocomposites have been prepared by melt blending the recovered MDH nanoparticles within PMMA at different loadings (5, 10, and 20 wt% MDH). According to TGA results, the incorporation of lamellar or fibrous MDH nanoparticles into PMMA leads to a significant improvement in PMMA thermal stability, both under air and inert atmosphere. The results obtained by PCFC and cone calorimeter tests show an important decrease in the peak of heat release rate (pHRR) concomitant with charring during the combustion. Lamellar MDH nanoparticles were found to be more efficient than fibrous MDH nanoparticles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Double‐walled carbon nanotubes (DWCNTs) and multiwalled carbon nanotubes (MWCNTs) were modified using melamine to attach ? NH2 to the surface of these fillers, without previous oxidation of their graphene layers. FT‐Raman, elemental (chemical) and thermogravimetric analysis, confirmed the modification, which was more extensive for DWCNTs. The potential of this modification was evaluated by adding the melamin‐modified nanotubes to thermosets based on diglycidyl ether of bisphenol A (resin) and polycyclic amine (hardener). Broadening of the glass transition interval and an increase between 7 and 8 °C of the glass transition temperatures show better filler/matrix interaction for the nanocomposites based on melamine‐modified nanotubes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1860–1868, 2009  相似文献   

12.
The influence of TiO2 nanoparticles on the thermal degradation of poly(methyl methacrylate) (PMMA) was investigated by TGA. The studied materials were characterized by Py-GC-MS, TEM, SEM, TGA, DSC and TGA-MS. The PMMA-TiO2 nanocomposites were prepared by melt blending with different (5, 10, 15 and 20 wt% TiO2) loadings. According to TGA results and to the activation energy (determined by the model-free isoconversional method of Vyazovkin), the incorporation of 5 wt% of TiO2 nanoparticles into PMMA stabilizes it by more than 40 °C. However, for higher loading contents, a catalytic effect on the thermal decomposition was observed which increased with the oxide content. The results obtained by Py-GC-MS showed clearly that TiO2 increases the formation of methanol, methacrylic acid and propanoic acid methyl ester during the degradation of PMMA. This catalytic effect could be explained through the interaction of the methoxy group of the methacrylate function with the hydroxyl groups present at the surface of the oxide particles.  相似文献   

13.
In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs–g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N1S peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT–g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G′) and loss modulus (G″) were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix.  相似文献   

14.
To study the influence of the T31 content on the combustion properties and thermal degradation behaviors of flame-retardant epoxy composites, a series of flame-retardant epoxy composites were prepared using E-44 epoxy resin as matrix, T31 curing agent as curing agent, and intumescent flame retardant (IFR, based on phosphorus acid, melamine, and pentaerythritol) as flame retardant. The influence of T31 content on combustion behaviors and thermal degradation properties of the flame-retardant epoxy composites were studied using cone calorimeter test (CCT) and thermal-gravimetric analysis (TG), respectively. The cone calorimeter test results indicate that the decrease of T31 can significantly decrease the HRR, THR, SPR, and enhance the char residue of the epoxy composites. EP-4 with 7.0 wt% T31 shows the lowest HRR, SPR and the highest char residue. Furthermore, the TG results indicate that the EP-4 has the highest char residue among all the epoxy composites.  相似文献   

15.
In this study a series of multi-walled carbon nanotube (MWCNT)/Polyethylene (PE) composites with different kinds and several concentrations of carbon nanotubes (CNTs) were investigated. The morphology and degree of dispersion of the fillers in the polymer matrix at different length scales was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both individual and agglomerated MWCNTs were evident but a good dispersion was observed for some of them. TGA measurements were performed on nanocomposites in order to understand if CNTs affect the stabilization mechanism during thermal and oxidative degradation. The analysis demonstrates that MWCNTs presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. In contrast, thermal oxidative degradation in air is delayed up to about 100 °C dependently from MWCNTs concentration, in the range used here (0.1-2.0 wt%), and degree of dispersion. The stabilization is due to the formation of a thin protective layer of entangled MWCNTs kept together by carbon char generated on the surface of the nanocomposites as shown by SEM images taken on degradation residues.  相似文献   

16.
"An in situ polymerization process was used to prepare poly (methyl methacrylate) (PMMA)-functionalized carboxyl multi-walled carbon nanotubes using carboxylate carbon nanotubes and methyl methacrylate as reactants and benzoyl peroxide as an initiator agent. The functionalized multi-walled carbon nanotubes were characterized using transmission electron microscope, scanning electron microscope, nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman. The results indicate that the PMMA chains are covalently linked with the surface of carboxylate carbon nanotubes. The surface morphology is controlled by the content of carboxylate carbon nanotubes in the reactants. The PMMA functionalized multi-walled carbon nanotubes are soluble in deuterated chloroform. The storage modulus and tanffi magnitude increase as the content of CCNTs increases up to 0.3%."  相似文献   

17.
A simple strategy for the fabrication of multiwalled carbon nanotubes (MWNTs)–nanocrystal (NC) heterostructures is shown. Different nanoparticles can be covalently coupled to functionalized carbon nanotubes (CNTs) in a uniform and controllable manner. MWNTs have been functionalized by a polymer wrapping—technique that is non-invasive, and does not introduce defects to the structure of CNTs; the polymer is noncovalently adsorbed on the MWNT's surface. Moreover, this method ensures good dispersion and high stability in any commonly used organic or inorganic solvent. In this manner, our strategy allows the attachment of various colloidal nanoparticles to CNTs, independent of their surface properties, i.e. hydrophilic or hydrophobic.  相似文献   

18.
A novel flame-retardant silane containing phosphorus and nitrogen, tetramethyl(3-(triethoxysilyl)propylazanediyl) bis(methylene) diphosphonate (TMSAP), is firstly synthesized and then incorporated into poly(methyl methacrylate) (PMMA) matrix through sol–gel method to produce organic–inorganic hybrids. The chemical structure of TMSAP was confirmed by Fourier transform infrared spectra, 1H nuclear magnetic resonance (NMR) and 31P NMR spectra. The hybrids obtained maintain relatively high transparency, and exhibit a significant improvement in thermal properties, mechanical performance and flame retardancy when compared to pure PMMA, including increased glass transition temperature (T g ) by 11.4 °C, increased onset thermal degradation temperature (T0.1) by 82.6 °C, increased half thermal degradation temperature (T0.5) by 42.0 °C, increased hardness, increased limited oxygen index and decreased heat release rate. Morphological studies of hybrids by scanning electron microscopy (SEM) and 29Si MAS NMR suggest that cross-linked silica network is formed in the hybrids and the inorganic silica particles are distributed well in the polymer matrix. Thermal degradation behaviors investigated by thermogravimetric analysis and char structure analysis studied by SEM and X-ray photoelectron spectroscopy demonstrate the catalytic charring function of TMSAP, and synergistic effect between phosphorus, nitrogen and silicon element. The formation of network structure, homogeneous distribution of silica and the char formation during degradation play key roles in these property enhancements. Detailed mechanisms for these enhancements are proposed.  相似文献   

19.
Investigations were made about the effect of fullerene (C60) on the resistance to thermal degradation of high density polyethylene (HDPE), polypropylene (PP), polymethyl methacrylate (PMMA), and bisphenol A polycarbonate (PC) matrix by using thermogravimetric analysis coupled to Fourier transform infrared spectroscopy. The results showed that the influences of C60 on the resistance to the thermal degradation of different polymers were dependent on their thermal degradation mechanism. The resistance to the thermal degradation of HDPE, PP, and PMMA were improved with the addition of C60, especially for HDPE matrix, which indicated that the radical trapping played a dominant role. PP and PMMA released more gaseous products at high temperature by the random scission of C–C backbone; owing to the lower bond dissociation energy of C–C in the backbone for the existence of side chains. Meanwhile, the steric hindrance of side chains also made the radicals hard to recombine with each other and accelerated the random scission, leading to the less effect on the resistance to the thermal degradation of PP and PMMA. However, few changes of resistance to the thermal degradation were found in PC matrix with the addition of C60 for its non-radical degradation mechanism.  相似文献   

20.
The differential microemulsion polymerization technique was used to synthesize the nanoparticles of glycidyl-functionalized poly(methyl methacrylate) or PMMA via a two-step process, by which the amount of sodium dodecyl sulfate (SDS) surfactant required was 1/217 of the monomer amount by weight and the surfactant/water ratio could be as low as 1/600. These surfactant levels are extremely low in comparison with those used in a conventional microemulsion polymerization system. The glycidyl-functionalized PMMA nanoparticles are composed of nanosized cores of high molecular weight PMMA and nano-thin shells of the random copolymer poly[(methyl methacrylate)-ran-(glycidyl methacrylate)]. The particle sizes were about 50 nm. The ratios of the glycidyl methacrylate in the glycidyl-functionalized PMMA were achieved at about 5–26 wt.%, depending on the reaction conditions. The molecular weight of glycidyl-functionalized PMMA was in the range of about 1 × 106 to 3 × 106 g mol−1. The solid content of glycidyl-functionalized PMMA increased when the amount of added glycidyl methacrylate was increased. The glycidyl-functionalized polymer on the surface of nano-seed PMMA nanoparticles was a random copolymer which was confirmed by 1H-NMR spectroscopy. The amounts of functionalization were investigated by the titration of the glycidyl functional group. The structure of the glycidyl-functionalized PMMA nanoparticles was investigated by means of TEM. The glycidyl-functionalized PMMA has two regions of Tg which are at around 90 °C and 125 °C, respectively, of which the first one was attributed to the poly[(methyl methacrylate)-ran-(glycidyl methacrylate)] and the second one was due to the PMMA. A core/shell structure of the glycidyl-functionalized PMMA latex nanoparticles was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号