首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
聚丙烯熔融接枝马来酸酐反应机理的研究   总被引:17,自引:0,他引:17  
施德安  殷敬华  柯卓 《应用化学》2001,18(11):865-0
改变聚丙烯(PP)熔融接枝马来酸酐(MAH)反应中的单体和引发剂的浓度以及添加适当助剂,考察了接枝产物的接枝率和恒定剪切应力(600kPa)及温度(210℃)下的剪切粘度,验证了作先前所提出的PP熔融接枝MAH的反应机理。即:在PP熔融接枝MAH的过程中,过氧化物自由基在熔融接枝过程中直接引发MAH单体及MAH单体在聚丙烯的大分子链段发生β断裂前直接被其引发而产生的接枝反应是影响产物的接枝率和分子量的关键。在不改变单体和引发剂浓度的情况下,降低过氧化物自由基在熔融接枝过程中直接引发MAH单体反应的程度而提高聚丙烯的大分子自由基直接引发MAH单体的反应趋势,是提高接枝产物接枝率和分子量的有效途径。  相似文献   

2.
Rare earth oxide, neodymium oxide (Nd2O3), ‐assisted melt free‐radical grafting of maleic anhydride (MAH) on isotactic‐polypropylene (i‐PP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 into reactive system leads to an enhancement of the grafting degree of MAH, along with an elevated degradation of i‐PP matrix. When Nd2O3 content is 4.5 mmol %, the increment of the grafting degree of MAH (maximally) is up to about 30% compared with that of the related system without adding Nd2O3, while the severest degradation of i‐PP matrix simultaneously occurs. On the basis of the reaction mechanism of PP‐g‐MAH proposed before, the sequence of β‐scission and grafting reaction is discussed in detail. It is found that, for the reactive system studied, most tertiary macroradicals first undergo β‐scission, and then, grafting reaction with MAH takes place at the new radical chain ends. The imported Nd2O3 has no effect on the aforementioned reaction mechanism, whereas it enhances the initiating efficiency of the initiator, dicumyl peroxide (DCP). We tentatively explain the experimental results by means of synergistic effect between DCP and Nd2O3. It is calculated that the synergistic effect is maximal when the molar ratio of DCP to Nd2O3 is approximately 1:6. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 134–142, 2006  相似文献   

3.
The free‐radical grafting of maleic anhydride (MAH) and styrene (St) onto isotactic polypropylene (iPP) was studied by thermal decomposition of dicumyl peroxide (DCP) using supercritical CO2 as a solvent and swelling agent. Several effects of molar ratio of monomer, soaking temperature and time, reaction time, and reaction pressure on the graft degree were discussed. It was found that the addition of St to the grafting system as a comonomer could significantly enhance the graft degree of the grafted PP. Under the optimal reaction condition, the maximum of iPP grafting MAH and St in supercritical CO2 medium was 10.58%. The chemical structures and properties of grafting copolymers were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The results showed that the supercritical CO2 method had noticeable advantages over the existed method when compared, such as a lower temperature, a higher graft degree, easy separation, and environmentally benign. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
马来酸酐-苯乙烯熔融接枝聚丙烯的影响因素及其性能研究   总被引:24,自引:0,他引:24  
用单螺杆挤出机制备了马来酸酐 (MAH) 苯乙烯 (St)对聚丙烯 (PP)的多组分单体自由基熔融接枝体系 .研究证实了当两种单体物质的量比约为 1∶1时 ,接枝物的接枝率最高 ,而熔体流动速率 (MFR)最大 .对反应体系影响因素的研究表明单体用量和引发剂用量对不同单体用量比的系列接枝物的接枝率会产生不同的影响 ;另外 ,单体用量增加 ,接枝物的MFR减小 ,过氧化二异丙苯 (DCP)用量增加 ,接枝物的MFR增加 .对多单体熔融接枝聚丙烯PP g (MAH co St)的力学性能研究发现 ,选用合适的单体用量比、单体用量和DCP用量时 ,所制备的接枝物可具有与纯PP相当或更佳的力学性能  相似文献   

5.
Monte Carlo simulation was used to study the graft of maleic anhydride (MAH) onto linear polyethylene (PE‐g‐MAH) initiated by dicumyl peroxide (DCP). Simulation results revealed that major MAH monomers attached onto PE chains as branched graft at higher MAH content. However, at extremely low MAH content, the fraction of bridged graft was very close to that of branched graft. This conclusion was somewhat different from the conventional viewpoint, namely, the fraction of bridged graft was always much lower than that of branched graft under any condition. Moreover, the results indicated that the grafting degree increased almost linearly to MAH and DCP concentrations. On the other hand, it was found that the amount of grafted MAH dropped sharply with increasing the length of grafted MAH, indicating that MAH monomers were mainly attached onto the PE chain as single MAH groups or very short oligomers. With respect to the crosslink of PE, the results showed that the fraction of PE‐(MAH)n‐PE crosslink structure increased continuously, and hence the fraction of PE‐PE crosslink decreased with increasing MAH concentration. Finally, quantitative relationship among number average molecular weight of the PE, MAH, and DCP contents was given. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5714–5724, 2004  相似文献   

6.
固相共聚接枝合成功能化聚丙烯及机理研究   总被引:17,自引:0,他引:17  
通过马来酸酐 (MAH)和乙酸乙烯酯 (VAc)固相共聚接枝聚丙烯 (PP) ,在二者的投料摩尔比接近 1:1时 ,得到了高接枝率的多官能团功能化的PP .反应的机理是两单体摩尔比接近 1:1时容易形成较为稳定的过渡态 ,从而两者的共聚活性大大增加 ,接枝率大大提高 ,同时抑制了接枝产品熔体流动指数的增加 .这种含有多种官能团 (酸酐官能团和酯基官能团 )的极性PP对于拓展PP的应用范围 ,促进PP本身及其共混合金材料的功能化和高性能化有着重要的意义  相似文献   

7.
Varying concentrations of maleic anhydride (MAH) were grafted onto three types of polypropylene (PP) in the presence of dicumyl peroxide (DCP). Pull-off adhesive strength from a copper substrate, tensile Young's modulus, and tensile strain-at-break were determined and SEM observations made as a function of the MAH concentration for each PP. One of the PPs plus 3 wt% MAH provides a high value of the adhesive strength along with the Young modulus and the strain-at-break sufficient for the use as a coating for copper wires and cables.  相似文献   

8.
采用熔融共混法研究助剂马来酸酐(MAH)、马来酸酐接枝聚丙烯(PP-2)对可生物降解聚碳酸亚丙酯(PPC)/聚丙烯(PP)非织造布切片结构与性能的影响.红外谱图表明MAH和PP-2的酸酐官能团与PPC发生了开环反应.MAH、PP-2可显著提高切片的拉伸强度,当MAH,PP-2用量为1%和2%时,切片拉伸强度较不添加助剂时分别提高了116%和101%.MAH,PP-2的加入降低了切片的熔体流动速率,提高了特性黏数,同时提高了切片的玻璃化转变温度(Tg)和热分解温度,扩大了切片的使用和加工温度范围.当MAH用量为1%时,切片Tg提高了4℃.当MAH,PP-2用量为1%和2%时,切片5%热分解温度分别提高了44℃和20℃.加入MAH、PP-2的切片断面的微观形貌图显示切片内部凹陷和空洞较少,较为平整,PP-2改善切片相容性的效果优于MAH.PPC和PP置于磷酸缓冲液中30天的降解率分别为4.30%和0%,说明PP在磷酸缓冲液中几乎不降解.加了助剂的切片30天的降解率在3.80%以上,说明制备的PPC/PP非织造布切片是可降解的,对环境友好.开环反应、增加切片界面黏附力、降低界面张力等可能是助剂提高切片性能的作用机理.  相似文献   

9.
Spherical polyethylene/polypropylene (PE/PP) in-reactor blend granules with various ethylene/propylene molar ratios and high porosity were synthesized using a high yield TiCl4/MgCl2 supported catalyst. A solution of benzoyl peroxide (BPO)/maleic anhydride (MAH)/xylene (interfacial reagent) or BPO/MAH/St (comonomer) was absorbed onto the PE/PP inreactor blend granules, and solid phase gratt polymerization of MAH on PE/PP was conducted. The amount of grafted MAH on PE/PP was measured through chemical titration. The results showed that solid phase graft polymerization of MAH in PE/PP in-reactor blend granules produced graft copolymer with high amount of grafted MAH, and the amount of grafted MAH was raised slightly when St was introduced as comonomer. The graft in-reactor blend was fractionated into five fractions through temperature-gradient extraction fractionation (TGEF), and the fractions were analyzed by FTIR. The results revealed that MAH is mainly grafted on the PE segments, whereas MAH was predominantly grafted on the PP segments when St was present in the graft polymerization system. In addition, the final product is still in the form of regular spherical granules, which is beneficial for industrial processing.  相似文献   

10.
接枝和交联对纳米Si02改性NR/PP共混型热塑弹性体的影响   总被引:2,自引:0,他引:2  
动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶,聚丙烯共混型热塑性弹性体(NR/PPTPE).研究了马来酸酐,苯乙烯,过氧化二异丙苯(MAH/St/DCP)多单体“就地”熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO:TPE的力学性能、耐溶剂性能和耐热变形性能最佳.MAH/St/DCP“就地”接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PPTPE的综合性能得到明显的改善.  相似文献   

11.
接枝和交联对纳米SiO_2改性NR/PP共混型热塑弹性体的影响   总被引:9,自引:0,他引:9  
动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPE).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体“就地”熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO2TPE的力学性能、耐溶剂性能和耐热变形性能最佳.MAH/St/DCP“就地”接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PP TPE的综合性能得到明显的改善.  相似文献   

12.
Physically and dynamically vulcanized (TPV) mixtures of polypropylene (PP) and ethylene propylene diene terpolymer (EPDM) are prepared by extrusion in order to improve the impact resistance of PP. To enhance the chemical compatibility and provide better interaction between the PP and EPDM in the physical mixtures, both polymers are modified with maleic anhydride (MAH) in solution using xylene as solvent and dicumyl peroxide (DCP) as initiator. The qualitative and quantitative determination of the degree of grafting is study by Fourier Transform Infrared Spectroscopy (FTIR) and varying the amount of DCP and/or amount of MAH in order to determine the optimum amounts to obtain the highest degree of grafting. The effect of the relation of PP/EPDM, the amount of reinforcement filler and mix rate are studied for modified polymer mixtures (PP-g-MAH/EPDM-g-MAH). For the TPV of PP/EPDM the effects of amount and triallylisocyanurate (TAC) as coupling agent in presence of different amounts of DCP are studied. The physical mixtures of modified polymers prepared with a PP/EPDM ratio of 80/20 and the TPVs blends prepared with a PP/EPDM ratio of 70/30 and containing 15% filler at 60 rpm show the highest impact resistance. The impact resistance, melt flow index and hardness of the different mixtures are measured to determine their possible applications to prepare front panels and bumpers for automobiles by injection molding.  相似文献   

13.
The application of Friedel‐Crafts alkylation reaction to the compatibilization of polypropylene (PP)/polystyrene (PS) blends was assessed. A PP macrocarbocation is chemically bonded to the PS benzene ring by aromatic electrophilic substitution. The graft copolymer formed at the interphase (PP‐g‐PS) showed relatively high emulsification strength, suggesting an effective behavior as in situ compatibilizer. The critical micelle concentration (CMC) was related to Friedel‐Crafts catalyst concentration. The amount of PS grafting and possible appearance of crosslinking and chain scission side reactions were also analyzed. The reaction products were characterized by a combination of size exclusion chromatography and Fourier transform infrared techniques applied after a careful solvent extraction separation. It was found, from the emulsification curve, that CMC was achieved when 0.7 wt % AlCl3 was added. This value was confirmed by scanning electron microscopy observation of phase adhesion on fractured sample surfaces. Mass balances of extracted PS showed that at least 15 wt % of the initial PS resulted grafted at the CMC condition. Chain scission reactions, in parallel with grafting, were verified to occur for PP as well as for PS. Instead, crosslinking reactions were not detected. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 452–462, 2004  相似文献   

14.
采用溶液聚合的方式合成了α-甲基苯乙烯/苯乙烯/马来酸酐三元共聚物(简称为PASM),研究了单体组成、反应温度和时间等因素对共聚的影响,并进一步研究了三元共聚物对聚丙烯的功能化作用和对聚丙烯/尼龙6(PP/Ny6)共混体系的原位增容作用.GPC和TG等技术对PASM的表征结果显示,随着单体组成中α-甲基苯乙烯(AMS)...  相似文献   

15.
Accelerated thermal and photo-aging of four homopolymers, low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and high-impact polystyrene (HIPS), was performed and the impact of subsequent reprocessing conditions on their properties studied. Polymer samples oven-aged at 100 °C for varying periods of time or UV irradiated in a Weather-o-meter (WOM) at λ = 340 nm were reprocessed in a Brabender plasticorder at 190 °C/60 rpm for 10 min. Chemical changes and the evolution of rheological and mechanical properties accompanying the gradual degradation of the individual polymers were monitored and evaluated (DSC, FTIR, colorimetric method, MFI, tensile impact strength). LDPE and HIPS were found to be more susceptible to thermo-oxidation than HDPE and PP, whereas HDPE and PP were affected to a greater extent by UV exposure; the crucial role here is being played by the stabilization of the studied resins. In HDPE the scission and crosslinking reactions competed both in thermo-and photo-degradation. In the case of LDPE, scission prevailed over branching during thermo-oxidation, whereas photo-oxidation of the same sample led predominantly to crosslinking. Abrupt deterioration of the LDPE rheological properties after one week of thermal exposure was suppressed by re-stabilization. The scission reaction was also predominant for PP during thermo-oxidation, and it took place even faster during UV exposure. In the case of HIPS a slight photo-degradation of PS matrix is accompanied by simultaneous crosslinking of the polybutadiene component.  相似文献   

16.
The solution and bulk copolymerization of dicyclopentadiene (DCP) and maleic anhydride (MAH) occurs over the temperature range 80–240°C, upon the addition of a free-radical catalyst which has a short half-life at the reaction temperature. An unsaturated 1/1 MAH/DCP copolymer, derived from the copolymerization of MAH with the norbornene double bond, followed by a Wagner-Meerwein rearrangement, is obtained in the presence of a large excess of DCP at 80° C, while a saturated 2/1 MAH/ DCP copolymer, derived from the cyclocopolymerization of the residual cyclopentene unsaturation, is obtained at higher temperatures or in the presence of excess MAH. The copolymers prepared under other conditions with intermediate MAH/DCP mole ratios contain both 1/1 and 2/1 repeating units. The copolymer obtained from bulk copolymerization above 170° C contains units derived from cyclopentadiene-MAH cyclocopolymerization as well as DCP-MAH copolymerization.  相似文献   

17.
Maleic Anhydride (MAH) was grafted onto poly(L-lactic acid) (PLLA) in the presence of dicumyl peroxide (DCP) as a radical initiator. The effect of the MAH and DCP concentrations on the grafting and the physical and mechanical properties of PLLA films were investigated. The glass transition temperature and crystallinity significantly decreased with addition of MAH. The thermal decomposition of the PLLA films was affected by the MAH content while the mechanical properties were almost unchanged. A slight increase in molecular weight was found, which could be attributed to either the MAH branching reaction or a possible crosslinking reaction between the PLLA chains increasing the chain entanglements.  相似文献   

18.
The traditional melt radical functionalisation of isotactic polypropylene (iPP) with maleic anhydride (MAH) and peroxide affords functionalized samples with a severe decrease of the average molecular weight (MW) due to the β-scission reaction. In this work new push-pull unsaturated molecules were investigated, consisting of a heterocyclic ring conjugated with a double bond bearing an electron attracting group. These molecules were specifically designed as MAH substitute able to limit the iPP degradation, while providing functionalisation through grafting. Butyl 3-(2-furanyl) propenoate (BFA) and butyl 3-(2-thienyl) propenoate (BTA) were comparatively tested. The analysis of the reaction products indicated that both molecules are able to graft onto the iPP backbone by prompt reaction with the macro-radicals formed through H-abstraction from iPP chains, thereby significantly limiting the MW decrease, as the functionalized macro-radicals are stabilized by resonance. Nonetheless, some of iPP macro-radicals can give a parallel chain scission before reacting with the new molecules. In the case of BFA, coupling reactions of the formed macro-radicals can lead to the formation of branched high MW architectures, whereas in the case of the thiophene derivative (BTA) only a partial retaining of polymer chain fragmentation was observed due to the reduction of β-scission.  相似文献   

19.
聚丙烯接枝马来酸酐及其离聚物的等温结晶行为   总被引:14,自引:0,他引:14  
采用DSC对马来酸酐接枝聚丙烯(PP g MAH)及其3种5个离聚物的等温结晶行为进行了研究,发现在相对结晶度2%~90%的范围内符合Avrami方程.马来酸酐的引入及离子化并不改变PP的结晶行为,但样品的结晶速率增大,同时结晶速率亦随中和度的提高而增大.从Hofman理论得到7个样品的垂直于晶核的界面自由能σe,其变化与Avrami方程的结果是一致的.  相似文献   

20.
The covalent attachment of [60] fullerene (C60) to isotactic polypropylene (i‐PP) is achieved by direct reaction in 1,2,4‐trichlorobenzene (TCB) solution in the presence of dicumyl peroxide (DCP). The chemically modified pendant C60/i‐PP polymers are soluble in chlorinated solvents and have been characterized by ultraviolet–visible and fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, cyclic voltametry, and thermogravimetric analysis. From the results it can be concluded that the modification of i‐PP by grafting via a free‐radical reaction competes with the possibility of chain scission of i‐PP due to the presence of DCP. The functionalized polymers crystallize in the monoclinic crystal modification, and have high crystallinity. The incorporation of C60 significantly enhances the thermal stability of the i‐PP. Electrochemical measurements demonstrate good electron acceptor properties of the fullerenated i‐PP samples. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6722–6733, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号