首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field and temperature dependences of magnetization and the temperature dependences of the initial magnetic susceptibility have been theoretically studied for three crystallographic directions in a trigonal NdFe3(BO3)4 antiferromagnetic crystal. The calculations were performed using a molecular field approximation and a crystal field model for the rare-earth subsystem. The obtained theoretical expressions are applied to the interpretation of recent experimental data [1–4] on the magnetic properties of NdFe3(BO3)4. The results of calculations show a good agreement with experiment. The proposed theory adequately describes (i) anomalies of the Schottky type in the temperature dependence of the magnetic susceptibility, (ii) nonlinear curves of magnetization in the basal plane in a magnetic field up to 1 T (showing evidence of the first-order phase transitions) and their evolution with the temperature, and (iii) the field and temperature dependences of magnetization in a magnetic field up to 9 T.  相似文献   

2.
The magnetic structure of the Sr2Cu3O4Cl2 two-subsystem antiferromagnet is studied by the nuclear quadrupole resonance (NQR) method on the 63, 65Cu and 35Cl nuclei. The resonance spectrum above T N2 = 40 K is determined by the Zeeman splitting of the levels of the 63, 65Cu nuclei of the copper atoms at the Cu1 site with the first-order quadrupole perturbation. The magnetic field on the copper nuclei is equal to 93 kOe. The spectrum below n is significantly different: it includes a low-frequency part, which is associated with the ordering of the second magnetic subsystem Cu2. The splitting of the NQR lines of 35Cl is observed above and below T N2. This fact indicates the ferromagnetic ordering of the moments of the Cu1 subsystem, which are located along the c axis of the crystal, and makes it possible to determine the direction of the magnetic field on Cu1 copper as (110).  相似文献   

3.
Ordered arrays of nanowires of the photochromic antiferromagnet SpFeMn(C2O4)3 (where Sp is 1-{(1′,3′,3′-trimethyl-6-nitro-5′-chlorospiro[2H-1-benzopyran-2,2′-indolin]-8-yl)methyl}pyridinium) have been fabricated in anodized aluminum oxide pores with diameters of 20 and 200 nm. It has been revealed that the growth of the spin-glass phase with noncollinear ordering of spins in nanowires is suppressed in favor of the uniaxial antiferromagnetic phase. A decrease in the nanowire diameter leads to an increase in the anisotropy of the magnetic resonance spectra. This is associated with the magnetocrystalline anisotropy that considerably exceeds the anisotropy of the nanowire shape.  相似文献   

4.
Pressure effects on magnetic properties of two La0.7Ca0.3MnO3 nanoparticle samples with different mean particle sizes were investigated. Both the samples were prepared by the glycine-nitrate method: sample S—as-prepared (10 nm), and sample S900—subsequently annealed at 900 °C for 2 h (50 nm). Magnetization measurements revealed remarkable differences in magnetic properties with the applied pressure up to 0.75 GPa: (i) for S sample, both transition temperatures, para-to-ferromagnetic T C = 120 K and spin-glass-like transition T f = 102 K, decrease with the pressure with the respective pressure coefficients dT C/dP = −2.9 K/GPa and dT f/dP = −4.4 K/GPa; (ii) for S900 sample, para-to-ferromagnetic transition temperature T C = 261 K increases with pressure with the pressure coefficient dT C/dP = 14.8 K/GPa. At the same time, saturation magnetization M S recorded at 10 K decreases/increases with pressure for S/S900 sample, respectively. Explanation of these unusual pressure effects on the magnetism of sample S is proposed within the scenario of the combined contributions of two types of disorders present in the system: surface disorder introduced by the particle shell, and structural disorder of the particle core caused by the prominent Jahn–Teller distortion. Both disorders tend to vanish with the annealing of the system (i.e., with the nanoparticle growth), and so the behavior of the sample S900 is similar to that previously observed for the bulk counterpart.  相似文献   

5.
The crystal and magnetic structures of Fe1.087Te have been studied by neutron powder diffraction in the temperature range from 1.7 to 80 K at pressures of  ≈0.4 and ≈1.2 GPa. No symmetry change of the tetragonal paramagnetic ambient pressure phase (space group P4/nmm) was observed for temperatures above 60 K and pressures up to  ≈1.2 GPa. A novel pressure-induced phase of Fe1.087Te having orthorhombic symmetry (space group Pmmn) and incommensurate antiferromagneticbicollinear order was observed in the temperature range from 50 to 60 K at  ≈1.2 GPa. The known monoclinic ambient pressure phase of Fe1.087Te (space group P2 1/n) with commensurate antiferromagnetic order was found to be stable up to at least  ≈1.2 GPa at low temperature.  相似文献   

6.
The magnetic properties of an easy-axis trigonal DyFe3(BO3)4 antiferromagnetic crystal have been theoretically studied. On this basis, recent experimental data [1] on the field and temperature dependences of magnetization and the temperature dependence of the initial magnetic susceptibility for three crystallographic directions in this antiferromagnet have been interpreted. The characteristics of the trigonal crystal field for the rare earth ion and the parameters of the Fe-Fe and Fe-Dy exchange interactions are determined. Limitations imposed by features of the magnetic characteristics (anisotropic magnetization in the three crystallographic directions, Schottky-type anomalies in the magnetic susceptibility, etc.) on the possible splitting of the ground-state multiplet in the crystal field and the splitting of the lowest doublet due to the f-d interaction for Dy3+ ions are established.  相似文献   

7.
The spectrum of spin fluctuations in the stacked-triangular antiferromagnet YMnO3 was studied above the Néel temperature using both unpolarized and polarized inelastic neutron scattering. We find an in-plane and an out-of-plane excitation. The in-plane mode has two components just above T N : a resolution-limited central peak and a Debye-like contribution. The quasi-elastic fluctuations have a line width that increases with q as Dq z and the dynamical exponent z = 2.3. The out-of-plane fluctuations have a gap at the magnetic zone center and do not show any appreciable q dependence at small wave vectors.  相似文献   

8.
The dependence of the NMR frequencies on the external magnetic field in a Mn3Al2Ge3O12 non-collinear 12-sublattice antiferromgnet is calculated using the exchange approximation for the spin dynamics.  相似文献   

9.
The magnetic properties of (CH3NH3)2CuBr4 quasi-two-dimensional crystals were studied experimentally. The magnetic-field and temperature dependences of magnetization were measured for various magnetic field orientations relative to the crystallographic axes. Possible reasons for features in the behavior of the magnetization are discussed.  相似文献   

10.
11.
The vibrational frequencies of the BiFeO3 crystal lattice in the cubic phase (Pm3m) and the rhombohedral paraelectric phase (R3c) are calculated in terms of the ab initio model of an ionic crystal with the inclusion of the dipole and quadrupole polarizabilities. In the ferroelectric phase with the symmetry R3c, the calculated spontaneous polarization of 136 μC cm?2 agrees well with the experimental data. The dependences of the unit cell volume, the elastic modulus, and the vibrational frequencies on the pressure are calculated. It is found that the frequency of an unstable ferroelectric mode in both the cubic (Pm3m) and rhombohedral (R3c) phases are almost independent of the applied pressure, in contrast to classical ferroelectrics with a perovskite structure, where the ferroelectric instability is very sensitive to a variation in the pressure.  相似文献   

12.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

13.
The nonlinear microwave absorption in the (CH3NH3)2CuBr4 antiferromagnetic crystal is investigated experimentally. The temperature and angular dependences of the parameters of nonlinear resonance and the dependences of these parameters on the microwave pump power are analyzed. It is found that the nonlinear properties deteriorate with decreasing temperature and the linear and nonlinear contributions are competitive in character.  相似文献   

14.
Quantum correlations are generally impossible to address directly in bulk systems. Quantum measures extended only to a few number of parties can be discussed in practice. In the present work we study a cluster of spins belonging to a compound whose structure is that of a quantum magnet. We reproduce at a much smaller scale the experimental outcomes and then we study the role of quantum correlations there. A macroscopic entanglement witness has been introduced in order to reveal quantum correlations at nonzero temperatures. The critical point beyond which entanglement is zero is found at T c = 15 K.  相似文献   

15.
The neodymium ferroborate NdFe3(BO3)4 undergoes an antiferromagnetic transition at T N = 30 K, which manifests itself as a λ-type anomaly in the temperature dependence of the specific heat C and as inflection points in the temperature dependences of the magnetic susceptibility χ measured at various directions of an applied magnetic field with respect to the crystallographic axes of the sample. Magnetic ordering occurs only in the subsystem of Fe3+ ions, whereas the subsystem of Nd3+ ions remains polarized by the magnetic field of the iron subsystem. A change in the population of the levels of the ground Kramers doublet of neodymium ions manifests itself as Schottky-type anomalies in the C(T) and χ(T) dependences at low temperatures. At low temperatures, the magnetic properties of single-crystal NdFe3(BO3)4 are substantially anisotropic, which is determined by the anisotropic contribution of the rare-earth subsystem to the magnetization. The experimental data obtained are used to propose a model for the magnetic structure of NdFe3(BO3)4.  相似文献   

16.
Magnetic and electron paramagnetic resonance (EPR) properties of EuFe3(BO3)4 single crystals have been studied over the temperature range of 300–4.2 K and in a magnetic field up to 5 T. The temperature, field and orientation dependences of susceptibility, magnetization and EPR spectra are presented. An antiferromagnetic ordering of the Fe subsystem occurs at about 37 K. The easy direction of magnetization perpendicular to the c axis is determined by magnetic measurements. Below 10 K, we observe an increase of susceptibility connected with the polarization of the Eu sublattice by an effective exchange field of the ordered Fe magnetic subsystem. In a magnetic field perpendicular to the c axis, we have observed an increase of magnetization at T < 10 K in the applied magnetic field, which can be attributed to the appearance of the magnetic moment induced by the magnetic field applied in the basal plane. According to EPR measurements, the distance between the maximum and minimum of derivative of absorption line of the Lorentz type is equal to 319 Gs. The anisotropy of g-factor and linewidth is due to the influence of crystalline field of trigonal symmetry. The peculiarities of temperature dependence of both intensity and linewidth are caused by the influence of excited states of europium ion (Eu3+). It is supposed that the difference between the g-factors from EPR and the magnetic measurements is caused by exchange interaction between rare earth and Fe subsystems via anomalous Zeeman effect.  相似文献   

17.
Temperature and field dependences of the magnetization of VBO3 and CrBO3 single crystals with the magnetic field applied parallel and perpendicular to the (111) basal plane were measured. VBO3 was found to have a considerable uniaxial anisotropy with a field Ha≈6.25 T. CrBO3 was shown to exhibit not only uniaxial but also hexagonal anisotropy. The experimental anisotropy constants were estimated, and their temperature dependences are presented.  相似文献   

18.
The effect of high pressures up to 70 GPa on single-and polycrystalline samples of yttrium iron garnet Y357Fe5O12 is studied by Mössbauer absorption spectroscopy (for the 57Fe nucleus) in a diamond-anvil cell. It is found that the hyperfine magnetic field Hhf at 57Fe nuclei vanishes abruptly at a pressure of 48 ± 2 GPa, which indicates the transition of the crystal from the ferrimagnetic state to nonmagnetic one. The magnetic transition is irreversible. When the pressure decreases, the magnetic state is not recovered and the garnet remains nonmagnetic until zero pressure. The behavior of the quadrupole splitting and isomer shift shows that, simultaneously with the magnetic transition, irreversible electron and possibly spin transitions occur with changes in the local crystalline structure. The mechanisms of the magnetic collapse are discussed.  相似文献   

19.
Single crystals of the Tb0.75Ho0.25Fe3(BO3)4 ferroborate have been grown by the group method from a solution–melt based on bismuth trimolybdate. The magnetic and magnetoelectric properties of the ferroborate single crystals have been investigated in the temperature range from 4.2 to 300 K and in magnetic fields up to 9 T. Magnetically, this material is an antiferromagnet with the Néel temperature T N = 38.8 K and easy-axis anisotropy. The magnitude of the magnetoelectric polarization has been found to be more than 1.5–2.0 times greater than the sum of the polarizations induced by the magnetic field for the ferroborates TbFe3(BO3)4 and HoFe3(BO3)4 taken in the corresponding shares.  相似文献   

20.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号