首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
<正>Principles of terahertz(THz) interferometric synthetic aperture imaging with heterodyne and optical techniques are presented.A THz interferometric experiment based on optical up-conversion is set up.The received THz signal is modulated into an optical carrier and transmitted in a fiber.To simulate phase differences between two THz receivers,the output of receiver is divided and a phase shifter is placed before electro-optical modulation(EOM).Interferometric spectra of these modulated optical signals are examined at different phase shifts.Otherwise,carrier suppression and phase error calibration are discussed for THz interferometric synthetic aperture imaging.  相似文献   

2.
We describe the formation and enhancement of two dimensional pulsed terahertz (THz) images obtained in the reflection geometry with a high-speed optical delay line. Two test objects are imaged and analyzed with respect to material information and concealed structure. Clear THz images were obtained with various imaging modes and were compared with the X-ray images. The THz image of a sample revealed material features that the X-ray image cannot distinguish. We could enhance the THz image quality using various image processing techniques, such as edge detection, de-noising, high-pass filtering, and wavelet filtering.  相似文献   

3.
Scientists in terahertz (THz) wave technologies have benefited from the recent developments in ultrafast laser technologies and RF technologies and applied these new gained techniques into characterizing a wide variety of phenomena. Undoubtedly, the most successful of these applications has been in the development of time-domain terahertz spectroscopic and imaging systems which has been utilized in the characterization of dielectrics and semiconductors. This pulsed technique has allowed users to characterize dynamical behavior inside materials under illumination with picosecond resolution. Typically pump/probe or similar dynamical measurements require the use of amplified pulses derived from free-space solid state lasers in the $\upmu $ J–mJ range and since interferometric techniques are typically used in pulsed measurements the measurement time of a THz spectrum can last at least tens of minutes. Better systems can be realized based on fiber laser technologies. Here we discuss the advantages of a THz spectrometer driven by an ultrafast Ytterbium doped fiber laser whose repetition rate can be tuned rapidly allowing for rapid dynamical measurements. The efficient gain medium, robust operation and compact design of the system opens up the possibility of exploring rapid detection of various materials as well as studying dynamical behavior using the high brightness source.  相似文献   

4.
鹿文亮  娄淑琴  王鑫  申艳  盛新志 《物理学报》2015,64(11):114206-114206
提出了一种伪色彩太赫兹成像技术. 通过引入频域色彩区间积分, 建立了一套基于太赫兹时域光谱技术的伪色彩太赫兹成像系统, 实验分别研究了乳糖和对氨基苯甲酸两种不同白色化学粉末的伪色彩成像和灰度成像, 研究了不同颜色区间定义对伪色彩图像的影响, 讨论了利用不同频率信息成像系统所能达到的空间分辨率. 研究结果表明, 伪色彩成像技术可以将不同的物质信息同时成像在一张太赫兹图像中, 通过不同物质在太赫兹图像中呈现出的颜色差别来区分不同的物质及其分布. 克服了传统的太赫兹灰度成像技术中, 需要多张图像来区分不同的物质的问题, 提高了成像速度, 降低了筛选难度. 利用高频信息进行伪色彩成像, 可以将系统成像的空间分辨率提高到0.4 mm. 伪色彩成像方式可以更直观快捷地显示样品的基本属性, 对于实现太赫兹安检的初检和快速筛选具有重大的现实意义.  相似文献   

5.
Terahertz (THz) interferometric synthetic aperture tomography (TISAT) for confocal imaging within extended objects is demonstrated by combining attributes of synthetic aperture radar and optical coherence tomography. Algorithms recently devised for interferometric synthetic aperture microscopy are adapted to account for the diffraction-and defocusing-induced spatially varying THz beam width characteristic of narrow depth of focus, high-resolution confocal imaging. A frequency-swept two-dimensional TISAT confocal imaging instrument rapidly achieves in-focus, diffraction-limited resolution over a depth 12 times larger than the instrument's depth of focus in a manner that may be easily extended to three dimensions and greater depths.  相似文献   

6.
太赫兹波可以穿透许多物质,相对于可见光和X射线具有非常强的互补特征,在成像方面的应用前景非常广阔。介绍了一种基于透射谱的连续波太赫兹成像系统,并利用该系统做了一些实验探索。  相似文献   

7.
A monostatic strip-map mode interferometric synthetic aperture ladar (SAL) is reported. Using a chirped laser of about 5 mW at 1550 nm wavelength as the illumination source and two cross-track receiving apertures with a baseline of 1.6 mm, the ladar can generate both well-focused two-dimensional SAL images without adopting phase error removing techniques and three-dimensional images by interferometric SAL techniques. Detailed results are illustrated for retro-reflective or diffusive targets at a distance of 2.4 m.  相似文献   

8.
Optical rectification of femtosecond pulses in nonlinear materials is an efficient method to generate ultra short terahertz (THz) pulses over a wide frequency range extending from 100 GHz to well above 10 THz. Lithium niobate is particularly well suited for such purposes and can be used both in bulk and periodically poled forms. Different optical techniques for the generation of THz pulses are presented and compared theoretically. The whole discussion is performed for the interaction of gaussian beams using the radiating antenna approach that takes into account the diffraction of the THz wave, and therefore may predict the THz emission in a direction that differs from the optical pulse propagation. PACS 42.65.Ky; 42.70.Mp; 42.72.Ai  相似文献   

9.
We present a unique combination of the numerical three-dimensional (3D) reconstruction of the shape of an object with interferometric deformation measurements. Two cameras record several holograms of an object that is illuminated by structured illumination. This illumination is realized by speckle patterns. To improve the image quality, an inplace speckle reduction technique is combined with the structured illumination to reduce the effect of disturbing subjective speckles which appear in the reconstructed images. Stereophotogrammetric methods are applied to extract the 3D surface information of the object out of the reconstructed images. Since the recording is done by holography and because stereophotogrammetry enables a pointwise correlation between the two views, it is possible to combine other holographic techniques with the reconstructed 3D shape. This is demonstrated by an interferometric deformation measurement of an object cooling down. The resulting interferometric fringes are mapped onto the reconstructed 3D surface. Hence, the proposed method enables automatic and dense matching of interferometric fringe-maps recorded by spatially separated holograms onto the surface of the object, which has not yet been realized by existing techniques.  相似文献   

10.
We describe a setup that allows for the measurement of high-quality images at frequencies in the far-infrared (THz) regime of the spectrum. By using water-cooled THz emitters that are biased with a 50-kHz, ±400-V square wave, rapid delay scanning, and differential lock-in detection at 50 kHz, we attain shot-noise-limited detection of THz transients. As a result, THz transients with a large dynamic range of 5000 can be measured in 20 ms. We show that the THz imaging setup enables the time-resolved detection of the diffusion of gases. PACS 07.57.-c; 42.30.-d; 95.85.Gn; 36.20.Ng  相似文献   

11.
给出了一种载频0.14 THz、带宽5 GHz的极高分辨力太赫兹雷达成像系统样机。系统采用Ka波段毫米波信号二倍频后作为样机收发链路的谐波混频本振,以线性调频连续波信号作为发射信号,接收时采用去斜接收。利用该太赫兹雷达进行了成像试验并得到了1维距离像与逆合成孔径雷达(ISAR)成像结果。结果表明,THz雷达样机实现了3 cm的高分辨力,其ISAR像清晰,反映了目标的细微特征。  相似文献   

12.
In this article, we primarily review the time-resolved imaging of THz phonon polariton, which is generated by femtosecond laser in ferroelectric crystal. We pay more attention to the imaging in thin crystal, which can be used as an integration platform for terahertz-optics or terahertz-electrics. The imaging techniques, which can get quantitatively in-focus time-resolved images, are introduced in more detail. They have made enormous progress in recent years, and are powerful tools for the research of phonon polariton, optics, and THz wave. We also briefly introduce the generation principle and general propagation properties of THz phonon polariton.  相似文献   

13.
The advantageous properties of terahertz (THz) waves, such as permeability through objects that are opaque for visible light and the energy spectrum in the microelectron‐volt range that are important in materials research, allow their potential use in various applications of sensing and imaging. However, since the THz region is located between the electronic and photonic bands, even the basic components such as detectors and sources have not been fully developed, unlike in other frequency regions. THz technology also has the problem of low imaging resolution, which results from a considerably longer wavelength than that of the visible light. However, the utilization of nanostructured electronic devices has recently opened up new horizons for THz sensing and imaging. This paper provides an overview of the THz detector and imaging techniques and tracks their recent progress. Specifically, two cutting‐edge techniques, namely, frequency‐selective THz‐photon detection and integrated near‐field THz imaging, are discussed in detail. Finally, the studies of superconductors and semiconductors with high‐resolution THz imaging are described.  相似文献   

14.
超宽带太赫兹时域光谱探测技术研究进展   总被引:1,自引:0,他引:1  
太赫兹时域光谱(THz time-domain spectroscopy, THz-TDS)技术是一种非常有效的相干探测技术,具有信噪比高,探测带宽,可在室温下工作,可进行时间分辨测量等特点,广泛应用于材料、化学、生物、安检等领域。较早时期的THz-TDS系统受限于太赫兹辐射源的带宽和光谱探测手段,测量范围有限(<5 THz),较高频段的光谱信息无法得到。为了进一步扩大太赫兹时域光谱探测技术的应用范围,迫切需要发展超宽带(≥10 THz)的太赫兹时域光谱探测技术。本文回顾了太赫兹时域光谱探测技术的发展进程,综述了实现超宽带太赫兹时域光谱探测的主要技术方法,展示了不同测量方法的典型实验方案,同时总结了不同探测方法的优缺点,并追踪了主要研究小组的前沿成果以及最新的应用进展。  相似文献   

15.
T-ray computed tomography   总被引:6,自引:0,他引:6  
Ferguson B  Wang S  Gray D  Abbot D  Zhang XC 《Optics letters》2002,27(15):1312-1314
We demonstrate a tomographic imaging modality that uses pulsed terahertz (THz) radiation to probe the optical properties of three-dimensional (3D) structures in the far-infrared. This THz-wave computed tomography (T-ray CT) system provides sectional images of objects in a manner analogous to conventional CT techniques such as x-ray CT. The transmitted amplitude and phase of broadband pulses of THz radiation are measured at multiple projection angles. The filtered backprojection algorithm is then used to reconstruct the target object, including both its 3D structure and its frequency-dependent far-infrared optical properties.  相似文献   

16.
为适应0.14 THz超高分辨雷达实时成像的需求,开发了基于CPU+GPU+FPGA的硬件架构和成像处理算法,算法以距离-多普勒为原型,引入L类维格纳分布变换提高横向分辨力,用Keystone变换方法对越距离单元徙动进行校正,并开发了系统非线性补偿算法。在载频0.14 THz、带宽5 GHz雷达样机上进行了逆合成孔径雷达成像试验,获得了3 cm3 cm的成像分辨力和实时成像能力,验证了信号处理方法的有效性。  相似文献   

17.
Optical rectification of femtosecond pulses in nonlinear materials is an efficient method to generate ultra-short terahertz (THz) pulses in a wide frequency range extending from 100 GHz to well above 10 THz. Lithium niobate (LN) is well suited for such a purpose despite the high absorption in the THz range. In this part we will focus on the various experimental realizations to produce THz radiation in bulk, periodically, aperiodically and two-dimensionally poled LN. The possible bandwidth, tunability and the techniques to overcome the high absorption will be discussed as well. PACS 42.65.Ky; 42.70.Mp; 42.72.Ai  相似文献   

18.
An interferometric method for parallel optical spectroscopy in the kilohertz range is reported, as well as its experimental validation in the context of high-speed laser Doppler imaging in vivo. The interferometric approach enables imaging in the low light conditions of a 2 kHz frame rate recording with a complementary metal-oxide semiconductor camera. Observation of mice craniums with near-infrared (lambda=785 nm) laser light in reflection configuration is reported. Doppler spectral images allegedly sensitive to blood flow are sequentially measured at several optical frequency detunings, to shift the spectral range of analysis in the radio-frequency spectrum.  相似文献   

19.
A terahertz (THz) quasi-near-field real-time imaging system is presented. Not only the consumption of experimental time is dramatically reduced, but also the resolution of the imaging system is improved to the magnitude of sub-wavelength of THz waves. THz images of a razor blade edge are obtained and the spatial resolution of the imaging system is discussed in detail. For checking the imaging capability of this system, three metallic plates with different sub-wavelength air hole arrays are imaged and the microstructure of these samples can be clearly observed in their THz images. It is believed that the THz quasi-near-field real-time imaging system should have tremendous applications in the THz microscopic field.  相似文献   

20.
存在于微波与远红外之间的太赫兹波,因其无损害,稳定性高等独特性质使太赫兹光谱与成像技术在近几年来得到了迅猛的发展。太赫兹波独有的无损伤检测特性,在安全检测方面具有良好的发展前景,获得广大学者的研究和关注。经过太赫兹成像系统获得的太赫兹图像,虽然可以识别出隐藏的武器或其他金属制品,但是太赫兹图像的对比度和清晰度均较差,不能完全符合人眼的视觉效果,也不利于机器识别。目前,对太赫兹图像质量的提高和改善,成为太赫兹成像技术长远发展和广泛应用的关键问题。实验采用太赫兹波投射式成像系统对藏于物体中的金属心型吊坠和金属箭头进行成像,扫描步长0.5 mm,由于太赫兹光源大,能量起伏等系统缺陷,以及外部环境的复杂与干扰,导致成像所得图像均有背景噪声严重,边界模糊等问题,成像质量较差。提出一种基于双阈值的canny均衡化太赫兹图像增强算法,根据太赫兹图像自身性质限制,确定阈值和对图像均衡化的范围,实现图像降噪并引入双阈值canny算法和梯度幅值算法,使图像的对比度和清晰得到整体提高,并保留和突出太赫兹图像的细节信息,获得高分辨率、边缘清晰的图像。实验表明该算法对太赫兹图像具有良好的降噪效果,能够保留图像细节信息,图像对比度和图像质量得到增强和提高,同时增强了太赫兹成像技术对隐藏缺陷或隐藏物体的辨别能力和透视能力,为其在安检应用方面提供必要保证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号