首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
 为了研究超高速碰撞过程中产生的膨胀等离子体云的电导率,设计了适用于瞬态等离子体电导率测量的扫描电探针系统。通过二级轻气炮加载LY12球形铝弹丸,运用设计的扫描电探针系统分别进行了相同入射角度和不同碰撞速度条件下超高速碰撞产生等离子体电导率的实验测量。通过对探针等效电路的分析,获得了在整个物理过程中给定探针位置处产生膨胀等离子体云的电导率随时间的变化关系。实验结果表明:在碰撞角度(与靶板平面的夹角)相同、传感器布局相同的条件下,碰撞速度越大,产生膨胀等离子体云的电导率相对越大。  相似文献   

2.
为了研究超高速碰撞产生等离子体的粒子能量对航天器电路中元器件的毁伤,获得超高速碰撞产生等离子体粒子能量的时空分布特性是十分必要的。基于超高速碰撞产生稀薄等离子体中带电粒子的运动速度、等离子体的扩散特点,推导出等离子体的粒子能量密度与带电粒子密度及带电粒子运动速度的关系式。进而通过对超高速碰撞2024-T4铝靶实验采集的原始数据分析,利用Matlab编程得到了超高速碰撞2024-T4铝靶产生膨胀等离子体云物理过程中,等离子体的粒子能量密度与带电粒子持续时间及被测点到碰撞点距离的时空分布规律。  相似文献   

3.
 为研究超高速弹丸碰撞靶板产生等离子体诱生的磁场,引用已有关于激光产生等离子体的磁场理论,结合麦克斯韦方程和法拉第电磁感应定律得到了超高速碰撞产生等离子体诱生磁场的1维理论模型。基于已有关于超高速正碰撞产生半球状等离子体云诱生磁场的偏微分方程,建立了柱坐标系下超高速斜碰撞产生部分椭球状等离子体云的偏微分方程。通过感应线圈进行了磁感应强度的实验测量,实验结果与模型预言表明,该模型可近似地描述超高速斜碰撞产生等离子体诱生的磁感应强度。  相似文献   

4.
超高速碰撞产生等离子体电磁特性的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
 综述了国外在超高速碰撞产生等离子体的电磁特性研究方面的现状,主要包括电子温度、等离子体的粒子密度、等离子体的振荡频率及产生的磁场特征等方面。利用等离子体特征参量诊断的扫描Langmuir探针系统、磁感应强度测量的线圈系统及实验系统,进行了超高速碰撞产生等离子体实验,分析了实验中产生等离子体的电磁特性。  相似文献   

5.
 针对探针与接地极板间的阻抗匹配问题,通过对超高速碰撞产生等离子体特征参量诊断系统的理论分析,获得了超高速碰撞产生等离子体的频率组成特征;基于该理论特征建立了一种适用于超高速碰撞产生等离子体的探针测量系统,并利用该探针测量系统进行了LY12实心球形铝弹丸超高速碰撞LY12铝靶实验,得到了该实验中超高速碰撞产生等离子体的功率谱特征。理论分析及实验获得的功率谱结果均表明超高速碰撞产生的等离子体具有低频为主的频谱特征:当频率低于5.8 kHz时,功率谱线比较平滑且幅值较小;频率达到11.0 kHz时,功率谱线的峰值和功率全谱峰值相近。因此频率在5.8~11.0 kHz范围的低频频段对功率谱线的峰值贡献较大,频率超过11.0 kHz时,功率谱线的大幅度抖动对功率谱线的峰值贡献较小。理论及实验结果证明了实验系统的可靠性和实现过程的合理性。  相似文献   

6.
材料受到强冲击会产生闪光和等离子体效应。通过超高速碰撞实验并结合多种先进测试手段,推导出了适用于计算超高速碰撞产生等离子体电离度的沙哈(Saha)公式,为超高速碰撞过程中弹丸和靶板的物质组成分析提供了强有力的工具。基于二级轻气炮加载系统结合等离子体特征参量诊断的Triple Langmuir probe诊断系统和光谱辐射测量的ESA4000光谱仪系统,进行了3种不同碰撞速度条件下的超高速碰撞实验。实验结果表明,超高速碰撞2A12铝靶产生闪光辐射中包含Al+的光谱辐射;通过实验数据的解析进一步揭示了光谱强度与弹丸速度的关系。随着弹丸速度的增加,Al+的辐射光谱强度增大,由2A12铝激发的Al+光谱中小波长所对应谱线的辐射光谱强度比长波长所对应谱线的辐射光谱强度增加更快。关于2A12铝靶在超高速撞击载荷下产生铝离子的光谱辐射特征以及辐射温度研究在航天器防护空间碎片、导弹拦截、天体物理及深空探测领域具有重要的应用价值,此外,等离子体的特征参量测量和光谱辐射特征研究,对于在微观层面深刻揭示超高速碰撞现象具有重要的理论意义。  相似文献   

7.
空间微小碎片与航天器表面超高速撞击, 能够抛射出等离子体, 在高充电的航天器表面诱发静电放电, 是可能引发航天器异常的一个重要因素. 本文利用等离子体驱动微小碎片加速器对充电材料进行超高速(3 km/s)撞击模拟实验, 通过观测放电脉冲信号来研究因撞击产生的等离子体诱发的放电, 得到较好的实验现象, 初步确认了超高速碎片撞击充电材料诱发放电的机理.  相似文献   

8.
为了获得超高速碰撞产生等离子体粒子密度的时空分布特性,利用点电荷电场的1维理论模型,综合运用质量守恒方程、动量守恒方程、能量守恒方程和麦克斯韦方程,推导出了等离子体在膨胀过程中粒子密度的时空分布规律。通过对超高速碰撞2024-T4铝靶实验采集的原始数据分析,得到了超高速碰撞2024-T4铝靶产生膨胀等离子体云粒子密度的时空演化规律。  相似文献   

9.
超高速碰撞2024-T4铝靶产生的闪光强度测量   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究超高速碰撞产生的闪光强度特征,利用建立的光学高温计测量系统并结合二级轻气炮加载系统,进行了2种实验条件下的超高速碰撞实验。每组实验使用2组光纤探头,1组为直接对准碰撞点安装,另1组为侧向对准碰撞点安装。通过实验所获原始数据的分析表明:在给定实验条件及光纤探头安装方案下,在405~633 nm波长范围内超高速碰撞2024-T4铝靶产生的闪光强度峰值随波长的增大而增强;在波长为667 nm附近闪光强度峰值减小。  相似文献   

10.
超高速碰撞2A12铝板产生闪光辐射的空间演化规律   总被引:3,自引:2,他引:1       下载免费PDF全文
为了描述超高速碰撞2A12铝板产生闪光辐射的空间演化规律,利用瞬态光纤高温计测量系统并结合二级轻气炮加载系统,开展了弹丸以30°的入射角度和不同碰撞速度条件下的超高速撞击实验。基于闪光辐射强度和辐射温度的实验数据处理得到了超高速碰撞2A12铝板在撞击点附近产生的最大闪光辐射强度和最大闪光辐射温度,基于大量实验,建立了撞击点附近最大闪光辐射的空间演化模型。并结合Origin软件对实验所得数据的拟合,得到了最大闪光辐射强度和辐射温度随探测点到着靶点间距离变化的拟合函数关系式。实验结果还表明:在相近碰撞速度、相同碰撞角度条件下,在同一椭球面上不同探测点位置处的最大闪光辐射强度和最大闪光温度差别不大,验证了撞击产生的闪光辐射以近似椭球的形状向外膨胀,随着等离子体云的向外膨胀,离碰撞点越远产生的最大闪光辐射强度和最大闪光辐射温度均越小;在相同碰撞角度、不同碰撞速度条件下,在同一椭球面上不同探测点位置处的最大闪光辐射强度和最大闪光温度均随碰撞速度的增加而增大。该研究在导弹拦截、天体物理及深空探测领域具有重要的应用价值。  相似文献   

11.
 有些等离子体,本身并不存在电极和参考点,而该电极或参考点是提供偏压朗缪尔探针所必需的。为了获得超高速碰撞所产生等离子体的特征参量,建立了一种新的静电探针诊断技术,该技术不需要扫描频率,其探针可用于测量与时间相关的电子温度、电子密度。该诊断系统基于双通道电路,电流和电压谱通过数字示波器同步输出。研究的主要目的是,应用双朗缪尔探针诊断2024-T4铝弹丸超高速碰撞2024-T4铝靶时产生的瞬态等离子体。  相似文献   

12.
 为了了解超高速碰撞产生等离子体的物理机制,采用理论方法对超高速碰撞LY12铝靶各物理过程的能量分配进行了分析,涉及到熔化相变、气化相变及等离子体形成过程的能量消耗。揭示了碰撞喷出物形成过程中各物理阶段对气化、等离子体形成的影响因素,包括碰撞的附加热机制、材料碰撞后等离子体羽的形成及等离子体羽膨胀的物理机制,并给出了模型描述。  相似文献   

13.
超高速碰撞闪光强度与碰撞角度关系   总被引:2,自引:2,他引:0       下载免费PDF全文
为了测量超高速碰撞过程中产生的闪光现象,进而研究相近碰撞速度、不同入射角度(弹道与靶板平面的夹角)条件下超高速碰撞产生闪光在整个物理过程的闪光强度随时间的变化规律,设计了适用于瞬态闪光测量的光学高温计测量系统。通过二级轻气炮加载LY12球形铝弹丸,运用设计的瞬态高温计测量系统分别进行了入射角度为30°,45°,60°和90°相近碰撞速度条件下碰撞LY12铝靶产生闪光现象的测量。获得了平均碰撞闪光强度峰值与碰撞角度的关系,平均碰撞闪光强度峰值随碰撞角度的减小而增大,碰撞角度为30°时表现更为明显。  相似文献   

14.
弹丸超高速撞击铝靶成坑数值模拟   总被引:5,自引:0,他引:5       下载免费PDF全文
 低地球轨道的各类航天器易受到微流星体及空间碎片的超高速撞击,损伤航天器飞行关键系统,进而导致航天器发生灾难性的失效。微流星体及空间碎片防护结构设计,是航天器设计的一个重要问题。采用AUTODYN软件进行了弹丸超高速正撞击及斜撞击铝靶成坑的数值模拟,给出了二维及三维模拟结果。研究了弹丸密度、弹丸形状、板厚度、弹丸速度、弹丸直径和弹丸撞击入射角等对靶成坑的影响。模拟结果同实验结果进行了比较,模拟的成坑形状和特征尺寸同实验相吻合。验证了数值模拟方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号