首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, for the first time, we introduced the seed-mediated method to the growth of cobalt hexacyanoferrate nanoparticles (CoNPs), using 3.5 nm gold nanoparticles as seeds and multiwalled carbon nanotubes (MWCNTs) as growth scaffold which would both show synergistic action toward the reduction of H2O2. Via gold seeds, the one-step fabrication of CoNPs on the glassy carbon electrode is simple without any linking reagents, which will ingeniously exert the electrochemical properties of cobalt hexacyanoferrate. Combined with glucose oxidase, the sensing surface is applied as a biosensor for glucose. The growth of CoNPs is a chemical deposition process around the small Au nanoseed particles. The nanoseeds bridge the CoNPs and CNTs to form a smart nanocomposite. Spherical CoNPs have a relatively moderate dispersion on the three-dimensional network of CNTs with relatively even diameter ca. 100 nm. Whereas, in the control experiments without gold seeds cobalt hexacyanoferrate can only form continuous films, of which the size is far from nanolevel and the catalytic ability is poor. The synthesis and fabrication/modification of CoNPs are simple and fast without prior preparation of CoNPs and lengthy process of cross-linking. The amount of the seeds and CNTs, growth time and concentration of growth solution were investigated. Scanning electron microscopy (SEM) and electrochemical method were used.  相似文献   

2.
A biosensor with improved performance was developed through the immobilization of horseradish peroxidase (HRP) onto electropolymerized polyaniline (PANI) films doped with carbon nanotubes (CNTs). The effects of electropolymerization cycle and CNT concentration on the response of the biosensor toward H2O2 were investigated. It was found that the application of CNTs in the biosensor system could increase the amount and stability of the immobilized enzyme, and greatly enhanced the biosensor response. Compared with the biosensor without CNTs, the proposed biosensor exhibited enhanced stability and approximately eight-fold sensitivity. A linear range from 0.2 to 19 μM for the detection of H2O2 was observed for the proposed biosensor, with a detection limit of 68 nM at a signal-to-noise ratio of 3 and a response time of less than 5 s.  相似文献   

3.
A new tyrosinase-based biosensor was developed for detection of phenolic compounds using composite film of multiwall carbon nanotube (MWCNT)/dimethylditetradecylammonium bromide (DTDAB)/tyrosinase (Tyr) on a Nafion-incorporated carbon paste electrode. The biosensor showed a sensitive electrochemical response to the reduction of the oxidation products of different phenolic compounds (phenol, catechol, p-cresol, and p-chlorophenol) by dissolved O2 in the presence of the immobilized enzyme. The effects of pH, operating potential, MWCNT concentration, and the DTDAB/Tyr ratio on electrochemical response were explored for optimum analytical performance. The biosensor exhibited a linear response range of 1.5–25.0, 2.0–15.0, 2.0–15.0, and 2.5–25.0 μM and sensitivity of 2,900, 3,100, 3,100, and 1,500 μA/mM for phenol, catechol, p-cresol, p-chlorophenol, respectively. In addition, the response of the enzyme electrode showed Michaelis–Menten behavior at concentrations of the phenolic compounds higher than 5.0 μM. The stability and the application of the biosensor were also evaluated.  相似文献   

4.
A tyrosinase (Tyr) biosensor has been constructed by immobilizing tyrosinase on the surface of Mg–Al–CO3 hydrotalcite-like compound film (HTLc) modified glassy carbon electrode (GCE) for the determination of polyphenols. The negatively charged tyrosinase was adsorbed firmly on the surface of a positively charged HTLc/GCE by electrostatic interactions and retained its activity to a great degree. The modified electrode was characterized by cyclic voltammetry and AC impedance spectra. Polyphenols were determined by a direct reduction of biocatalytically generated quinone species. The different parameters, including pH, temperature, and enzyme loading were investigated and optimized. Under the optimum conditions, Tyr/HTLc electrode gave a linear response range of 3–300, 0.888–444, and 0.066–396 μM with a detection limit (S/N = 3) of 0.1, 0.05, and 0.003 μM for catechol, caffeic acid, and quercetin, respectively. In addition, the repeatability and stability of the enzyme electrode were estimated. Total polyphenol contents of real samples were also determined to study the potential applicability of the Tyr/HTLc/GCE biosensor.  相似文献   

5.
Carbon nanotubes (CNTs) were used to modify magnesium fluoride (MgF2) film via the spin coating technique. Nanoparticles of MgF2 were in situ synthesized on surfaces of CNTs resulted in the composites (MgF2–CNTs) by means of sol–gel technique. The sizes of the MgF2 nanoparticles in situ synthesized on CNTs surfaces could be modulated by processing the MgF2 sol–gel in different ways. The MgF2–CNTs as prepared was mixed with MgF2 sol to fabricate composite films (MgF2–CNTs/MgF2). Instead of adding directly CNTs, adding MgF2–CNTs, into MgF2 sol could effectively improve the dispersion of CNTs, avoid emergence of carbon clusters in the compsite film, decrease surface roughness of the film, and enhance the interaction between the CNTs and MgF2 matrix. In the paper, the MgF2 nanoparticles were in situ synthesized on the surfaces of multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) respectively to prepare MgF2–SWCNTs/MgF2 and MgF2–MWCNTs/MgF2 composite films. Experimental results showed that the transparency of the MgF2–SWCNTs/MgF2 composite film was higher than that of the MgF2–MWCNTs/MgF2 film in the range of ultraviolet, visible and near-infrared wavelengths. The results showed SWCNTS could be an ideal reinforcement of MgF2 films to get good toughness, and retain its optical transmittance at the same time.  相似文献   

6.
A novel and sensitive biosensor was developed for the determination of nitrite. Firstly, multi-walled carbon nanotubes–poly(amidoamine)–chitosan (MWNT–PAMAM–Chit) nanocomposite along with the incorporation of DNA was used to modify the glassy carbon electrode. Then the immobilization of Cyt c was accomplished using electrochemical deposition method by consecutive cyclic voltammetry (CV) scanning in a neutral Cyt c solution. CV behaviors of the modified electrodes showed that the MWNT–PAMAM–Chit nanocomposite is a good platform for the immobilization of DNA and Cyt c in order, at the same time, an excellent promoter for the electron transfer between Cyt c and the electrode. At high potential, the immobilized Cyt c could be further oxidized into highly reactive Cyt c π-cation by two-step electrochemical oxidation, which could oxidize NO2 into NO3 in the solution. Therefore, a nitrite biosensor based on the biocatalytic oxidation of the immobilized Cyt c was fabricated, which showed a fast response to nitrite (less than 5 s). The linear range of 0.2–80 μM and a detection limit of 0.03 μM was obtained. Finally, the application in food analysis using sausage as testing samples was also investigated.  相似文献   

7.
A screen-printed carbon working electrode within a commercially available screen-printed three-electrode assembly was modified by using a composite of multiwalled carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI) followed by covering with the calf thymus dsDNA layer. Several electrochemical methods were used to characterize the biosensor and to evaluate damage to the surface-attached DNA: square wave voltammetry of the [Ru(bpy)3]2+ redox indicator and mediator of the guanine moiety oxidation, cyclic voltammetry and electrochemical impedance spectroscopy in the presence of the [Fe(CN)6]3−/4− indicator in solution. Due to high electroconductivity and large surface area of MWCNT and positive charge of PEI, the MWCNT–PEI composite is an advantageous platform for the DNA immobilization by the polyelectrolyte complexation and its voltammetric and impedimetric detection. In this respect, the MWCNT–PEI interface exhibited better properties than the MWCNT–chitosan one reported from our laboratory previously. A deep DNA layer damage at incubation of the biosensor in quinazoline solution was found, which depends on the quinazoline concentration and incubation time. Figure Impedance spectra for the modified electrodes. Conditions: 1 mM [Fe(CN)6]3–/4– in 0.1 M PBS (pH = 7.0), potential amplitude 10 m V, frequency range 12–1×104 Hz. Dedicated to Professor Jan Garaj on the occasion of his 75th birthday  相似文献   

8.
A label-free electrochemical biosensor for detecting DNA hybridisation was developed by monitoring the change in the voltammetric activity of ferrocenecarboxylic acid at the biosensor–solution interface. The biosensor was constructed by initially immobilising on a glassy carbon electrode an anchoring layer consisting of chitosan, carboxyl group functionalised carbon nanofibres and glutaraldehye. Chitosan acted as an adhering agent and carbon nanofibres were strategically used to provide a large surface area with binding points for DNA immobilisation, while glutaraldehye was a linker for DNA probes on the electrode surface. Based on a two-factorial design, cyclic voltammetry of [Fe(CN)6]3−/4− was performed to optimise the composition of the anchoring layer. Next, a 17-base pair DNA probe was attached to the anchoring layer, followed by its complementary target. Zr(IV) ion, known to exhibit affinity for oxygen-containing electroactive markers, for example, ferrocenecarboxylic acid, was then coordinated in the DNA duplex. In this way, ferrocenecarboxylic acid was attracted towards the biosensor for oxidation. A change in the voltammetric oxidation current of ferrocenecarboxylic acid pre- and post-hybridisation was used to provide an indication of hybridisation. A linear dynamic range between 0.5 and 40 nM and a detection limit of 88 pM of DNA target were then achieved. In addition, the biosensor exhibited good selectivity, repeatability and stability for the determination of DNA sequences.  相似文献   

9.
One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs–MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs–MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM–12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM−1), rapid response time (within 6 s). The apparent Michaelis–Menten constant ( Km\textapp K_m^{\text{app}} ) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.  相似文献   

10.
A novel glucose oxidase (GOD) biosensor was fabricated with a protic ionic liquid (PIL) N-ethylimidazolium trifluoromethanesulfonate ([EIm][TfO]) as the modifier of a carbon electrode. Due to the excellent conductivity and the conformational changes of the microenvironment around the GOD, the electrochemical and biocatalytic properties of GOD immobilized on the PIL-based electrode were dramatically enhanced. A couple of well-defined redox peaks could be observed, with a formal potential of −0.476 V. The GOD biosensor presented good catalytic activity to the oxidation of glucose in oxygen-saturated phosphate buffer solutions. The cathodic peak currents of GOD decreased along with glucose concentrations. A linear response in the range 0.005–2.8 mM was obtained with a detection limit of 2.5 μM. The sensitivity and the apparent Michaelis–Menten constant (K m) were estimated to be 14.96 μA mM−1 and 1.53 μM, respectively. In addition, the biosensor remained stable over 30 days, indicating its good chemical and mechanical stability. The glucose content of several serum samples was determined by using the newly developed biosensor, and the results were in good agreement with those obtained by hospital measurements. All results suggested that PILs were a good media for supporting biocatalytic processes on the bioelectrode.  相似文献   

11.
The adsorption of a 1-pyrenebutanoic acid, succinimidyl ester (PSE) interacting with metallic armchair (n, n) carbon nanotubes (CNTs) (n= 3-13) was investigated by using a density-functional tight-binding method with an empirical van der Waals force correction. In this study of large systems involving weak interactions, our calculations showed that the pyrene ring of PSE could be spontaneously absorbed onto the CNTs surface through π-π stacking at the physisorption distances. Increasing of the CNTs diameter leads to a higher adsorption energy. After adsorption of PSE on its sidewall, the geometric and electronic structures of CNTs are basically undamaged. CNTs contribute to the main peak of the electron excitation procedure in the UV/vis spectrum, with a slight red shift after adsorption of PSE.  相似文献   

12.
Tang L  Zhu Y  Yang X  Li C 《Analytica chimica acta》2007,597(1):145-150
An enhanced amperometric biosensor based on incorporating one kind of unique nanobiocomposite as dopant within an electropolymerized polypyrrole film has been investigated. The nanobiocomposite was synthesized by self-assembling glutamate dehydrogenase (GLDH) and poly(amidoamine) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) onto multiwall carbon nanotubes (CNTs). ζ-Potentials and high-resolution transmission electron microscopy (HRTEM) confirmed the uniform growth of the layer-by-layer nanostructures onto the carboxyl-functionalized CNTs. The size of Pt nanoparticles is approximately 3 nm. The (GLDH/Pt-DENs)n/CNTs/Ppy hybrid film was obtained by electropolymerization of pyrrole onto glassy carbon electrodes and characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and other electrochemical measurements. All methods indicated that the (GLDH/Pt-DENs)n/CNTs nanobiocomposites were entrapped within the porous polypyrrole film and resulted in a hybrid film that showed a high electrocatalytic ability toward the oxidation of glutamate at a potential 0.2 V versus Ag/AgCl. The biosensor shows performance characteristics with high sensitivity (51.48 μA mM−1), rapid response (within 3 s), low detection limit (about 10 nM), low level of interference and excellent reproducibility and stability.  相似文献   

13.
在碳纳米管(CNTs)和K3Fe(CN)6修饰的铂电极上吸附固定胆碱氧化酶,以鲁米诺为发光试剂,研制了胆碱电化学发光(ECL)生物传感器.CNTs可有效提高电极表面的电荷传输能力、提高电极表面的生物相容性和对酶分子的固载能力;K3Fe(CN)6对酶活性具有激活作用,同时对H2O2增敏的鲁米诺ECL有增强作用,均有利于提...  相似文献   

14.
在碳纳米管(CNTs)和K3Fe(CN)6修饰的铂电极上吸附固定胆碱氧化酶,以鲁米诺为发光试剂,研制了胆碱电化学发光(ECL)生物传感器。CNTs可有效提高电极表面的电荷传输能力、提高电极表面的生物相容性和对酶分子的固载能力;K3Fe(CN)6对酶活性具有激活作用,同时对H2O2增敏的鲁米诺ECL有增强作用,均有利于提高传感器的检测灵敏度。研究表明,将CNTs分散液与K3Fe(CN)6混合,滴涂修饰在Pt电极上,吸附固定胆碱氧化酶,制备传感器。此传感器在含有8×10-6mol/L鲁米诺的磷酸盐缓冲液(pH7.4)、30℃条件下产生的ECL强度与胆碱浓度在1×10-7~4×10-3mol/L范围内呈线性关系,相关系数为0.994,检出限为1.2×10-8 mol/L。此生物传感器应用于鼠血样中胆碱的测定,测得结果为2.68 mg/L,平均回收率为101.1%。传感器具有快速、稳定和重现性好等特点,有望应用于常规分析。  相似文献   

15.
Trichloroethylene (TCE), a suspected human carcinogen, is one of the most common volatile groundwater contaminants. Many different methodologies have already been developed for the determination of TCE and its degradation products in water, but most of them are costly, time-consuming and require well-trained operators. In this work, a fast, sensitive and miniaturised whole cell conductometric biosensor was developed for the determination of trichloroethylene. The biosensor assembly was prepared by immobilising Pseudomonas putida F1 bacteria (PpF1) at the surface of gold interdigitated microelectrodes through a three-dimensional alkanethiol self-assembly monolayer/carbon nanotube architecture functionalised with Pseudomonas antibodies. The biosensor response was linear from 0.07 to 100 μM of TCE (9–13,100 μg L−1). No significant loss of the enzymatic activity was observed after 5 weeks of storage at 4 °C in the M457 pH 7 defined medium (two or three measurements per week). Ninety-two per cent of the initial signal still remained after 7 weeks. The biosensor response to TCE was not significantly affected by cis-1,2-dichloroethylene and vinyl chloride and, in a limited way, by phenol. Toluene was the major interference found. The bacterial biosensor was successfully applied to the determination of TCE in spiked groundwater samples and in six water samples collected in an urban industrial site contaminated with TCE. Gas chromatography–mass spectrometric analysis of these samples confirmed the biosensor measurements.  相似文献   

16.
Nanostructured MnO2/carbon nanotubes composite electrode material was prepared using the liquid-phase deposition reaction starting with potassium permanganate (KMnO4) and manganese acetate (Mn(Ac)2·4H2O) as the reactants and carbon nanotubes (CNTs) as the substrates. The structure and morphology of the material was characterized by X-ray diffraction, infrared spectroscopy, and transmission electron microscope techniques. The electrochemical properties of the nano-MnO2/CNTs composite electrode in 1 M LiAc and 1 M MgSO4 solutions and in 1 M RAc (R = Li, Na, and K)–1 M MgSO4 mixed solutions, respectively, were studied. Experimental results demonstrated that the specific capacitance and rate discharge ability of the nano-MnO2/CNTs composite electrode in 1 M LiAc–1 M MgSO4 mixed solution is superior to that in 1 M LiAc or 1 M MgSO4 solution. For the 1 M RAc (R = Li, Na, and K)–1 M MgSO4 mixed electrolytes, the specific capacitance of the composite electrode was found to be in the following order: LiAc > NaAc > KAc.  相似文献   

17.
A new amperometric biosensor for hydrogen peroxide (H2O2) has been developed that is based on direct electrochemistry and electrocatalysis of hemoglobin (Hb) in a multilayer inorganic–organic hybrid film. o-Phenylenediamine (PDA) was electropolymerized onto a glassy carbon electrode (GCE), and then negatively charged nanogold particles and positively charged poly(diallyldimethylammonium chloride) (PDDA) were alternately assembled on the PDA/GCE surface. Finally, Hb was electrostatically adsorbed on the surface of gold nanoparticles. The electrochemical behavior of the resulting biosensor (Hb/{nanogold/PDDA}n/PDA/GCE) was assessed and optimized. The performance and factors influencing the biosensor were studied in detail. Under optimal conditions, the immobilized Hb displayed good electrocatalytic response to the H2O2 reduction ranging from 1.3 μM to 1.4 mM with a detection limit of 0.8 μM (at 3δ). In addition, the biosensor exhibited rapid response, good reproducibility, and long-term stability. Electronic supplementary material to this paper is available in electronic form at Correspondence: Dianyong Tang, Department of Chemistry and Life Science, Leshan Teachers College, Sichuan (Leshan) 614000, P.R. China  相似文献   

18.
In this paper, for the first time, Cu nanoparticles (CuNPs) were prepared by seed-mediated growth method with Au nanoparticles (AuNPs) playing the role of seeds. Carbon nanotubes (CNTs) and AuNPs were first dropped on the surface of glassy carbon (GC) electrode, and then the electrode was immersed into growth solution that contained CuSO4 and hydrazine. CuNPs were successfully grown on the surface of the CNTs. The modified electrode showed a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which was utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 1.0 × 10−7 to 5 × 10−3 M and a low detection limit of 3 × 10−8 M. Furthermore, the experiment results also showed that the biosensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species.  相似文献   

19.
The carbon nanotubes (CNTs) assisted strategy has been proposed for insulin sensing and insulin proteolysis analysis. Experiments demonstrated that this strategy could be used for trace insulin determination with a low detection limit 7.75 ng mL−1 (S/N = 3) and a detection range from 20 ng mL−1 to 400 ng mL−1. Both biocompatibility and intrinsic conductivity of pristine CNTs enabled them to act an excellent biosensing platform for the realization of direct electrochemistry and electrocatalysis of insulin. Compared with the present methods, the proposed strategy could realize the trace insulin detection without electrode modifications. It is more convenient and simpler than those based on the chemically modified electrodes. This method also made the CNTs as the indicator for insulin proteolysis analysis so that the biological process could be studied by electron microscope, electrochemical methods and digital camera. CNTs obtained after the proteolysis showed the same capabilities as the pristine ones in electrochemical signal enhancement and could participate in the bio-circle repeatedly.  相似文献   

20.
A novel hydrogen peroxide (H2O2) biosensor was developed by immobilizing hemoglobin on the gold colloid modified electrochemical pretreated glassy carbon electrode (PGCE) via the bridging of an ethylenediamine monolayer. This biosensor was characterized by UV-vis reflection spectroscopy (UV-vis), electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Hb exhibited excellent electrocatalytic activity for hydrogen peroxide. The Michaelis–Menten constant (K m) was 3.6 mM. The currents were proportional to the H2O2 concentration from 2.6 × 10−7 to 7.0 × 10−3 M, and the detection limit was as low as 1.0 × 10−7 M (S/N = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号