首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hydrogeochemical and stable isotope study (2H and 18O) was carried out in the Cuvelai-Etosha Basin in order to characterize available groundwater and to identify possible recharge mechanisms for the perched aquifers. Data were collected during seven field campaigns between 2013 and 2015 from a total of 24 shallow and deep groundwater hand-dug wells. In the investigated groundwaters, hydrogencarbonate is the dominating anion in both well types, whereas cations vary between calcium and magnesium in deep wells, and sodium and potassium in shallow wells. Groundwater chemistry is controlled by dissolution of carbonate minerals, silicate weathering and ion exchange. Stable isotopic composition suggests that deep groundwater is recharged by high-intensity/large rainfall events, whereas the shallow wells can even be recharged by less-intense/small rainfall events. Water in deep wells reflect a mixture of water influenced by evaporation during or before infiltration and water that infiltrated through fast preferential pathways, whereas shallow wells are strongly influenced by evaporation. The findings of this research contribute to improve the understanding of hydrogeochemistry, recharge paths and temporal variations of perched aquifers.  相似文献   

2.
The stable isotopic compositions of all major daily rain fall samples (n?=?113) collected from Kozhikode station in Kerala, India, for the year 2010 representing the pre-monsoon, southwest and northeast monsoon seasons are examined. The isotopic variations δ18O, δ2H and d-excess in daily rainfall ranged from δ18O: ?4.4 to 2?‰, δ2H: ?25.3 to 13.8?‰, and d-excess: ?2.4 to 15.3?‰; δ18O: ?9.7 to ?0.6?‰, δ2H: ?61.7 to 5.3?‰, and d-excess 5.8 to 17.4?‰; δ18O ?11.3 to ?1.4?‰, δ2H: ?75.3 to 0.9?‰, and d-excess: 8.8 to 21.3?‰ during the pre-, southwest and northeast monsoon periods, respectively. Thus, daily rainfall events during two monsoon periods had a distinct range of isotopic variations. The daily rain events within the two monsoon seasons also exhibited periodic variations. The isotopic composition of rain events during pre-monsoon and a few low-intensity events during the southwest monsoon period had imprints of secondary evaporation. This study analysing the stable isotopic characteristics of individual rain events in southern India, which is influenced by dual monsoon rainfall, will aid in a better understanding of its mechanism.  相似文献   

3.
By using 233 isotope samples, we investigated the spatial and temporal variations of δ18O and δ2H in precipitation and surface water, and the contribution of different water sources in the rivers within the Tarim River Basin (TRB), which receives snow/glacier meltwater, groundwater, and rainfall. Our study revealed a similar seasonal pattern of precipitation δ18O and δ2H at both the north and south edges of the basin, indicating the dominant effect of westerly air masses in the summer and the combined influence of westerly and polar air masses during the winter, although the southern part showed more complex precipitation processes in the summer. River water in the basin has relatively large temporal variations in both δ18O and δ2H showing a distinct seasonal pattern with lower isotope values in May than in September. Higher d-excess values throughout the year in the Aksu river and the Tizinafu river suggest that water may be intensively recycled in the mountains of the TRB. Based on isotopic hydrograph separation, we found that groundwater is the main water source that discharges the entire basin although individual rivers vary.  相似文献   

4.
A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.  相似文献   

5.
This paper presents the stable isotope data of oxygen (δ18O) and hydrogen (δ2H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009–2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ18O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ18O in groundwater.  相似文献   

6.
Stable isotopes of water (δ2H, δ18O) and δ13CTIC were used as a tool to trace the recharge processes, natural carbon (organic and inorganic) source and dynamics in the aquifers of the central Gangetic basin, India. Stable isotope (δ2H, δ18O) record of groundwater (n?=?105) revealed that the groundwater of Piedmont was recharged by meteoric origin before evaporation, while aquifers of the older and younger alluvium were recharged by water that had undergone evaporation loss. River Ganges and its tributaries passing through this area have very little contribution in recharging while ponds play no role in the recharging of adjacent aquifers. The connectivity of shallow aquifers of aquitard formation (comprised of clay/sandy clay with thin patches of fine grey sand), i.e. 25–60?m below ground level (bgl) with the main upper aquifer (at a depth of >120?m?bgl) was found to be higher in older and younger alluvium. Negative values of δ13CTIC (median ?9.6 ‰; range ?13.2 to ?5.4 ‰) and high TIC (median 35?mM; range 31–46?mM) coupled with low TOC (median 1.35?mg/L; range 0.99–1.77?mg/L) indicated acceleration in microbial activity in the younger alluvium, especially in the active floodplain of river Ganges and its proximity.  相似文献   

7.
ABSTRACT

The Lake Chad Basin (LCB) is an endorheic transboundary catchment highly vulnerable to drought. For effective groundwater management, recharge areas need identification and replenishment quantification. At present, little research exploring unsaturated zone water flow processes and groundwater recharge are available. In this study, 12 vertical soil profiles were analysed for stable water isotopes and chloride concentration to estimate evaporation and groundwater renewal. Most δ18O and δ2H isotope profiles reveal typical arid environment patterns, with maximum enrichment at depths between 2.5 and 20?cm and depletion towards the surface (atmospheric influence) and depth (mixing and diffusion). Average annual dry season evaporation rates in Salamat and Waza Logone range from 5 to 30?mm, in Bahr el Ghazal and Northern Lake Chad from 14 to 23?mm. According to the chloride mass balance (CMB), the average annual recharge rate is estimated between 3 and 163?mm in Salamat and Waza Logone and less than 1 mm in Bahr el Ghazal and Northern Lake Chad. Based on the CMB results, potential recharge sites were identified, while estimated soil evaporation corresponds to plant water use at the initial growing stage, which is an important component in irrigation water management.  相似文献   

8.
Stable isotopes of hydrogen and oxygen are often used for water balance calculations of lakes. We present an approach combining the lake water balance with an isotope mass balance to constrain the sources and sinks of the water of a small dimictic lake subjected to eutrophication. Meteorological and hydraulic data in combination with measured isotope signatures of the different water compartments enabled to assess the degree of surface water/groundwater interaction and the amount of overland flow into the lake. Groundwater could be excluded as a lake water source, as its water level was always below the lake water level. In the absence of a channelled inflow, precipitation and overland flow were the remaining options, whereby the latter was only active during periods of exceptionally high rainfall. While the groundwater signatures adjacent to the lake showed an influence of lake water, the lake water balance itself indicated that the associated volumetric water loss to groundwater is rather negligible. In the present case, only a combined assessment of hydrological and isotopic data allowed for an accurate characterization of the studied lake and a quantification of its water sources and sinks, highlighting the importance of using more than one methodological approach for such a purpose.  相似文献   

9.
ABSTRACT

Karst springs in the Main Range of the Crimean Mountains and the Crimean Piedmont show a restricted range of values (δ18O?=?–10.5 to –8.0 ‰, δ2H?=?–72 to –58 ‰), somewhat more negative than the weighted mean of meteoric precipitation. This suggests preferential recharge at higher elevations during winter months. Groundwater tapped by boreholes splits in three groups. A first group has isotopic properties similar to those of the springs. The second group shows significantly lower values (δ18O?=?–13.3 to –12.0 ‰, δ2H?=?–95 to –82 ‰), suggesting recharge during colder Pleistocene times. The third group has high isotope values (δ18O?=?–2.5 to +1.0 ‰, δ2H?=?–24 to –22 ‰); the data points are shifted to the right of the Local Meteoric Water Line, suggesting water–rock exchange processes in the aquifer. These boreholes are located in the Crimean Plains and discharge mineralized (ca. 25 g L?1) thermal (65°C) water from a depth of 1600–1800 m. Groundwater associated with mud volcanoes on the Kerch peninsula have distinct isotope characteristics (δ18O?=?–1.6 to +9.4 ‰, δ2H?=?–30 to –18 ‰). Restricted δ2H variability along with variable and high δ18O values suggest water–rock interactions at temperatures exceeding 95 °C.  相似文献   

10.
Based on Global Network Isotopes in Precipitation (GNIP) isotopic data set, a review of the spatial and temporal variability of δ18O and δ2H in precipitation was conducted throughout central and eastern Brazil, indicating that dynamic interactions between Intertropical and South Atlantic Convergence Zones, Amazon rainforest, and Atlantic Ocean determine the variations on the isotopic composition of precipitation over this area. Despite the seasonality and latitude effects observed, a fair correlation with precipitation amount was found. In addition, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories were used to quantify the factors controlling daily variability in stable isotopes in precipitation. Through a linear multiple regression analysis, it was observed that temporal variations were consistent with the meteorological parameters derived from HYSPLIT, particularly precipitation amount along the trajectory and mix depth, but are not dependent on vapour residence time in the atmosphere. These findings also indicate the importance of convective systems to control the isotopic composition of precipitation in tropical and subtropical regions.  相似文献   

11.
Stable isotopes of hydrogen (2H) and oxygen (18O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November–March and an enrichment in April–October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.  相似文献   

12.
ABSTRACT

Changes in groundwater evolutionary processes due to aquifer overexploitation show a world-wide increase and have been of growing concern in recent years. The study aimed to improve the knowledge of groundwater evolutionary processes by means of stable water isotopes and hydrochemistry in a representative lake basin, Ordos energy base. Groundwater, precipitation, and lake water collected during four campaigns were analysed by stable isotopes and chemical compositions. Results showed that temperature effect predominated the isotope fractionation in precipitation, while evaporation and inadequate groundwater recharge were the key factors explaining high salinity and isotopic enrichment in lake water. Additionally, the Kuisheng Lake was a preferential area of groundwater recharge, while the Subei Lake received less sources from underlying aquifer due to the combined effects of low permeable zone and upstream groundwater captured by the production wells. The homogeneous isotope signatures of groundwater may be ascribed to the closely vertical hydraulic connectivity between the unconfined and the confined aquifers. Isotopically enriched groundwater pumping from well field probably promoted isotopic depletion in groundwater depression cone. These findings not only provide the conceptual framework for the inland basin, but also have important implications for sustainable groundwater management in other groundwater discharge basins with arid climate.  相似文献   

13.
In the Basin and Range Province of the Southwestern U.S.A., deep carbonate groundwater has been suggested as a significant source to many overlying basin-fill alluvial aquifer systems. Notwithstanding, testing this hypothesis is limited by obtaining data from such considerable depths and complex geology.

This study uses δ2H and δ18O data from springs, rivers, and wells tapping shallow basin-fill groundwater to test the hydrochemical interpretation of deep regional carbonate groundwater flow into the basin-fill aquifers. Stable isotopic and major ion attributes of hydrochemical facies suggest basin-fill alluvial groundwater of the Lower Virgin River Basin is a mixture of precipitation recharge within the Lower Virgin River Basin or the Clover and Escalante Desert Basin northwards, and the deep carbonate flow. The data support the conclusions that in the Lower Virgin River Basin, deep carbonate groundwater is an important source to the alluvial aquifer system and likely accounts for approximately 50% of the alluvial aquifer groundwater. Na+, K+, and SO42– increase in the basin-fill alluvial groundwaters outside the Virgin River floodplain appears to be related with upwelling of deep regional groundwater, and indicating that the chemical character of the basin-fill alluvial groundwaters are related to the deeper flow systems.  相似文献   


14.
The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of 18O/16O and 2H/H ratios. A parsimonious four-variable regression model (r2?=?0.52) was able to predict daily δ18O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.  相似文献   

15.
ABSTRACT

The study area is the Namibian part of the Cuvelai-Etosha Basin (CEB), located in central northern Namibia. The CEB is home to 40 % of Namibia’s population, and most of the people live in rural areas. These people depend on both surface and groundwater resources which are limited in this dryland (mean annual rainfall ranging from 250 to 550?mm/a). The isotopic signatures of δ18O and δ2H from water samples (n?=?61) collected over a course of 9 years from various research projects and existing (but mainly unpublished) data of meteoric water of the CEB (10 sites) were evaluated and local meteoric water lines (LMWLs) developed. Further, the data is discussed in the context of seasonal characteristics and trends and compared to available data from the Global Network of Isotopes in Precipitation (GNIP) for the southern African region. Our results extend the portfolio of previously published LMWLs for southern Africa and provide a more precise baseline for any isotope-based study in that region. The slope of the LMWL from the GNIP stations correlates with latitude. This correlation cannot be found within the CEB. The dominant control on the isotopic signature of the CEB of precipitation is seasonal.  相似文献   

16.
The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3H values were around 8 TU in 2015, short-term 3H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006–2015 supplement adding to the Danube isotope set published earlier.  相似文献   

17.
The dominant transport mechanisms controlling the migration of contaminants in geologic media are advection and molecular diffusion. To date, defining which transport mechanism dominates in saturated, non-lithified sediments has been difficult. Here, we illustrate the value of using detailed profiles of the conservative stable isotope values of water (δ2H and δ18O) to identify the dominant processes of contaminant transport (i.e. diffusion- or advection-dominated transport) in near-surface, non-lithified, saturated sediments of the Interior Plains of North America (IPNA). The approach presented uses detailed δ18O analyses of glacial till, glaciolacustrine clay, and fluvial sand core samples taken to depths of 11–50 m below ground at 22 sites across the IPNA to show whether transport in the fractured and oxidized sediments is dominated by advection or diffusion. Diffusion is by far the dominant transport mechanism in fine-textured lacustrine and glacial till sediments, but lateral advection dominates transport in sand-rich sediments and some oxidized, fine-textured lacustrine and glacial till sediments. The approach presented has a number of applications, including identifying dominant transport mechanisms in geomedia and potential protective barriers for underlying aquifers or surface waters, constraining groundwater transport models, and selecting optimum locations for monitoring wells. These findings should be applicable to most glaciated regions of the world that are composed of similar hydrogeologic units (i.e. low K clay till layers overlain by higher K coarse-textured aquifers or weathered clay till layers) and may also be applicable to non-glaciated regions exhibiting similar hydrogeologic characteristics.  相似文献   

18.
Ratios of stable isotopes of hydrogen and oxygen (2H/1H and 18O/16O) in river waters were measured to investigate the hydrological pathway of the Xijiang River, Southwest China. The δ2H and δ18O values of river waters exhibit significant spatial and temporal variations and the isotopic compositions vary with elevation, temperature and precipitation of the recharge area. Spatially, δ18O values of river waters from high mountain areas are lower than those from the lower reaches of the Xijiang River due to lower temperature and higher elevation for the recharge area. However, both 2H and 18O are enriched differently in river waters from the middle reaches during the high flow season, depending on the season and degree of anthropogenic disturbances (e.g. water impoundments). In contrast, deuterium excess (d-excess) values of waters from the middle reaches are substantially lower than those from the upper and lower reaches, suggesting that river waters may be resided in the reservoir and evaporation increases in the middle reaches of the Xijiang River.  相似文献   

19.
The present study examines the isotopic and hydrochemical composition of 18 inland spring waters and 3 coastal karstic spring waters, covering the period between October 2005 and March 2008. The stable isotopes (18O, 2H) processing has revealed the absence of significant evaporation phenomena and that the origin of fresh water samples is meteoric. Using 18O values in rainfall waters, an average line of isotopic depletion with altitude has been constructed, extracting a rate of?0.45‰/100 m as typical for the study area. Furthermore, the mean altitude of recharge of the springs has been estimated by plotting the groundwater sampling points on a δ18O versus altitude diagram. Hydrochemistry results have shown that the dissolution of carbonate, flysch and ophiolitic formations defines the hydrochemical characteristics of groundwater. Moreover, seawater intrusion in the coastal area is significantly high, causing the water in the three karstic springs to be brackish.  相似文献   

20.
The precipitation is the input into the water system. Its stable isotope composition has to be known for the proper use and management of water resources. Croatia is not well represented in the Global Network of Isotopes in Precipitation (GNIP) database, and the geomorphology of the country causes specific local conditions. Therefore, at the Stable Isotope Laboratory (SILab), Rijeka, we monitor the stable isotope composition (δ18O, δ2H) of precipitation. Since δ18O and δ2H are well correlated, we concentrate the discussion on the δ18O distribution. Together with GNIP, our database contains 40 stations in Croatia and in the neighbouring countries. Their different latitudes, longitudes and altitudes give information of great detail, including the influence of the topographic structure on the precipitation in the south-eastern part of Europe, as well as the complex interplay of the different climate conditions in the area. Within a few hundred kilometres, the stable isotope values display a significant change from the maritime character in the south (mean δ18O around?6 to?8%‰) to the continental behaviour in the north (mean δ18O around?8 to?11%‰). Depending on the location, the mean δ18O values vary with altitude at a rate of approximately?0.2%‰/100 m and?0.4%‰/100 m, respectively. Also the deuterium excess has been found to depend on location and altitude. The data are being used to construct a δ18O map for the entire area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号