首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The stable isotopic compositions of all major daily rain fall samples (n?=?113) collected from Kozhikode station in Kerala, India, for the year 2010 representing the pre-monsoon, southwest and northeast monsoon seasons are examined. The isotopic variations δ18O, δ2H and d-excess in daily rainfall ranged from δ18O: ?4.4 to 2?‰, δ2H: ?25.3 to 13.8?‰, and d-excess: ?2.4 to 15.3?‰; δ18O: ?9.7 to ?0.6?‰, δ2H: ?61.7 to 5.3?‰, and d-excess 5.8 to 17.4?‰; δ18O ?11.3 to ?1.4?‰, δ2H: ?75.3 to 0.9?‰, and d-excess: 8.8 to 21.3?‰ during the pre-, southwest and northeast monsoon periods, respectively. Thus, daily rainfall events during two monsoon periods had a distinct range of isotopic variations. The daily rain events within the two monsoon seasons also exhibited periodic variations. The isotopic composition of rain events during pre-monsoon and a few low-intensity events during the southwest monsoon period had imprints of secondary evaporation. This study analysing the stable isotopic characteristics of individual rain events in southern India, which is influenced by dual monsoon rainfall, will aid in a better understanding of its mechanism.  相似文献   

2.
    
A hydrogeochemical and stable isotope study (2H and 18O) was carried out in the Cuvelai-Etosha Basin in order to characterize available groundwater and to identify possible recharge mechanisms for the perched aquifers. Data were collected during seven field campaigns between 2013 and 2015 from a total of 24 shallow and deep groundwater hand-dug wells. In the investigated groundwaters, hydrogencarbonate is the dominating anion in both well types, whereas cations vary between calcium and magnesium in deep wells, and sodium and potassium in shallow wells. Groundwater chemistry is controlled by dissolution of carbonate minerals, silicate weathering and ion exchange. Stable isotopic composition suggests that deep groundwater is recharged by high-intensity/large rainfall events, whereas the shallow wells can even be recharged by less-intense/small rainfall events. Water in deep wells reflect a mixture of water influenced by evaporation during or before infiltration and water that infiltrated through fast preferential pathways, whereas shallow wells are strongly influenced by evaporation. The findings of this research contribute to improve the understanding of hydrogeochemistry, recharge paths and temporal variations of perched aquifers.  相似文献   

3.
    
A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.  相似文献   

4.
Stable isotopes and electrical conductivity in groundwater were used as natural tracers to adjust the hydrogeological conceptual model in one of the largest catchments within the inter-mountainous Pampa plain, Argentina. Geostatistical tools were used to define the model that best fitted the spatial distribution of each tracer, and information was obtained in areas where there was a lack of data. The conventional isotopic analysis allowed the identification of three groundwater groups with different isotopic fingerprints. One group containing 56?% of the total groundwater samples suggested a well-mixed system and soil infiltration precipitation as the main recharge source to the aquifer. The other two groups included samples with depleted (25.5?%) and enriched (18.5?%) isotopic compositions, respectively. The combination of δ18O, δ2H and electrical conductivities maps suggested ascending regional flows and water transfer from the Quequén Grande River catchment to the Moro creek. The spatial interpretation of these tracers modified the conceptual hydrogeological model of the Quequén Grande River.  相似文献   

5.
    
ABSTRACT

Karst springs in the Main Range of the Crimean Mountains and the Crimean Piedmont show a restricted range of values (δ18O?=?–10.5 to –8.0 ‰, δ2H?=?–72 to –58 ‰), somewhat more negative than the weighted mean of meteoric precipitation. This suggests preferential recharge at higher elevations during winter months. Groundwater tapped by boreholes splits in three groups. A first group has isotopic properties similar to those of the springs. The second group shows significantly lower values (δ18O?=?–13.3 to –12.0 ‰, δ2H?=?–95 to –82 ‰), suggesting recharge during colder Pleistocene times. The third group has high isotope values (δ18O?=?–2.5 to +1.0 ‰, δ2H?=?–24 to –22 ‰); the data points are shifted to the right of the Local Meteoric Water Line, suggesting water–rock exchange processes in the aquifer. These boreholes are located in the Crimean Plains and discharge mineralized (ca. 25 g L?1) thermal (65°C) water from a depth of 1600–1800 m. Groundwater associated with mud volcanoes on the Kerch peninsula have distinct isotope characteristics (δ18O?=?–1.6 to +9.4 ‰, δ2H?=?–30 to –18 ‰). Restricted δ2H variability along with variable and high δ18O values suggest water–rock interactions at temperatures exceeding 95 °C.  相似文献   

6.
By using 233 isotope samples, we investigated the spatial and temporal variations of δ18O and δ2H in precipitation and surface water, and the contribution of different water sources in the rivers within the Tarim River Basin (TRB), which receives snow/glacier meltwater, groundwater, and rainfall. Our study revealed a similar seasonal pattern of precipitation δ18O and δ2H at both the north and south edges of the basin, indicating the dominant effect of westerly air masses in the summer and the combined influence of westerly and polar air masses during the winter, although the southern part showed more complex precipitation processes in the summer. River water in the basin has relatively large temporal variations in both δ18O and δ2H showing a distinct seasonal pattern with lower isotope values in May than in September. Higher d-excess values throughout the year in the Aksu river and the Tizinafu river suggest that water may be intensively recycled in the mountains of the TRB. Based on isotopic hydrograph separation, we found that groundwater is the main water source that discharges the entire basin although individual rivers vary.  相似文献   

7.
Groundwater depletion and changes in isotopic and chemical contents constitute the main indicators of overexploitation, recharge, and flow paths in the Souss–Massa aquifer. These indicators highlight processes concerning sustainability of water resources in the aquifer (e.g. surface/groundwater interaction, recharge processes, and marine intrusion). The spatial variation of stable and radioactive isotopic contents indicates a mixing of modern and old water within the system. Recent recharge was observed mainly along the Souss River (the major surface-water drainage in the study area) and in the irrigated areas. Mapping of chemical and isotopic variation shows that the area is affected by abstraction, irrigation water return, and the evolution of modern recharge in time and space. The processes, distribution, and timing of groundwater flow are influenced by short- and long-term effects; long-term recharge is dependent on climatic conditions. This study can be used to make informed decisions about water-resource allocation and alternative management practices.  相似文献   

8.
    
ABSTRACT

The north-east of Iran is a semi-arid region and faces a water shortage crisis. Therefore, monitoring water resources using accurate methods such as stable isotopes technique is vitally important. In this study, precipitation events were sampled in 10 stations in the Mashhad basin and the Bojnourd region in 2008, 2009, 2011, and 2015, additional surface and groundwater. These samples were analysed at the Ottawa University for both oxygen and hydrogen isotopes. In addition, the moisture sources were determined using the backward trajectories of the HYSPLIT model. The backward trajectories showed that both high- and low-latitude water bodies provide moisture for the north-east of Iran. However, the role of high-latitude water bodies including the Caspian, the Black, and the Mediterranean Seas is stronger. On the other hand, the stable isotopes showed large variations and the developed meteoric water lines deviated in both slope and intercept from the global meteoric water line. This showed that the precipitation events of the north-east of Iran were provided by various air masses and moisture sources. Finally, plotting the isotope values of the surface water resources on high- and low-latitude meteoric water lines demonstrated that these water resources were dominantly recharged by precipitation events originating from high-latitude water bodies.  相似文献   

9.
Environmental isotopes and hydrogeological data have been used for the construction of a conceptual model of fresh groundwater flow in the K?odzko Basin, Sudetes, Poland. The model has allowed the verification of a groundwater circulation scheme resulting from the general morphological assumptions and the recharge role to the surrounding mountains. Combined interpretation of the tritium ages and the isotopic altitude effect allowed determining the volume of water-bearing rock Vr and hydrogeological parameters of systems drained by springs and wells. Prior to the final determination of the recharge zone of individual objects, calculations were made for the thickness of the flow zone (h) and the distance from the recharge zone to the drainage point (L). The recharge areas for springs are located within a distance of 1–1.5 km and are characterized by a width of 0.75–1.65 km. The recharge area of wells is located in significantly longer distances of 2.1–12 km but yet definitely lower width. The recharge of groundwater from the Western direction seems to be obvious for all the wells and springs located westward from Nysa K?odzka River. The eastern component of the recharge appeared during the interpretation of the well in D?ugopole.

Dedicated to Professor Peter Fritz on the occasion of his 80th birthday  相似文献   

10.
An isotopic monitoring was undertaken in 2012–2014 at Lake ?abińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ18O and δ2H in the precipitation, lake water column, inflows and outflow, δ18O and δ13C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ18O and δ2H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water’s isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ18O of the carbonate fraction in the sediment traps depends on the δ18O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ18O and δ13C in precipitated carbonate.  相似文献   

11.
    
Stable isotopes of hydrogen and oxygen are often used for water balance calculations of lakes. We present an approach combining the lake water balance with an isotope mass balance to constrain the sources and sinks of the water of a small dimictic lake subjected to eutrophication. Meteorological and hydraulic data in combination with measured isotope signatures of the different water compartments enabled to assess the degree of surface water/groundwater interaction and the amount of overland flow into the lake. Groundwater could be excluded as a lake water source, as its water level was always below the lake water level. In the absence of a channelled inflow, precipitation and overland flow were the remaining options, whereby the latter was only active during periods of exceptionally high rainfall. While the groundwater signatures adjacent to the lake showed an influence of lake water, the lake water balance itself indicated that the associated volumetric water loss to groundwater is rather negligible. In the present case, only a combined assessment of hydrological and isotopic data allowed for an accurate characterization of the studied lake and a quantification of its water sources and sinks, highlighting the importance of using more than one methodological approach for such a purpose.  相似文献   

12.
    
The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of 18O/16O and 2H/H ratios. A parsimonious four-variable regression model (r2?=?0.52) was able to predict daily δ18O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.  相似文献   

13.
    
We produced continuous records of sea surface salinity and isotopic composition from 1998 to 2004 at Ishigaki Island, southwest Japan, and found clear seasonal variations in salinity and oxygen isotopic composition and increasing trends of them after 1999. These increasing trends could be principally due to the decreasing difference between local precipitation (P) and evaporation (E), as a result of the reduction of horizontal vapour transport from adjacent oceans. When samples collected in heavy rainfall events were excluded, the average Δδ18O/Δ salinity slope was obtained as 0.31, 0.35 in summer and 0.28 in winter. Estimated E/P ratios based on the isotopic box model are in good agreement with the ratios of independently estimated E to observed P.  相似文献   

14.
  总被引:1,自引:0,他引:1  
ABSTRACT

Changes in groundwater evolutionary processes due to aquifer overexploitation show a world-wide increase and have been of growing concern in recent years. The study aimed to improve the knowledge of groundwater evolutionary processes by means of stable water isotopes and hydrochemistry in a representative lake basin, Ordos energy base. Groundwater, precipitation, and lake water collected during four campaigns were analysed by stable isotopes and chemical compositions. Results showed that temperature effect predominated the isotope fractionation in precipitation, while evaporation and inadequate groundwater recharge were the key factors explaining high salinity and isotopic enrichment in lake water. Additionally, the Kuisheng Lake was a preferential area of groundwater recharge, while the Subei Lake received less sources from underlying aquifer due to the combined effects of low permeable zone and upstream groundwater captured by the production wells. The homogeneous isotope signatures of groundwater may be ascribed to the closely vertical hydraulic connectivity between the unconfined and the confined aquifers. Isotopically enriched groundwater pumping from well field probably promoted isotopic depletion in groundwater depression cone. These findings not only provide the conceptual framework for the inland basin, but also have important implications for sustainable groundwater management in other groundwater discharge basins with arid climate.  相似文献   

15.
    
Stable isotopes of water (δ2H, δ18O) and δ13CTIC were used as a tool to trace the recharge processes, natural carbon (organic and inorganic) source and dynamics in the aquifers of the central Gangetic basin, India. Stable isotope (δ2H, δ18O) record of groundwater (n?=?105) revealed that the groundwater of Piedmont was recharged by meteoric origin before evaporation, while aquifers of the older and younger alluvium were recharged by water that had undergone evaporation loss. River Ganges and its tributaries passing through this area have very little contribution in recharging while ponds play no role in the recharging of adjacent aquifers. The connectivity of shallow aquifers of aquitard formation (comprised of clay/sandy clay with thin patches of fine grey sand), i.e. 25–60?m below ground level (bgl) with the main upper aquifer (at a depth of >120?m?bgl) was found to be higher in older and younger alluvium. Negative values of δ13CTIC (median ?9.6 ‰; range ?13.2 to ?5.4 ‰) and high TIC (median 35?mM; range 31–46?mM) coupled with low TOC (median 1.35?mg/L; range 0.99–1.77?mg/L) indicated acceleration in microbial activity in the younger alluvium, especially in the active floodplain of river Ganges and its proximity.  相似文献   

16.
    
Beaver Lake and Radok Lake, the largest known epishelf lake and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ2H, δ18O) and hydrogeochemically studied. Radok Lake is an isothermal and non-stratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity, and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater.  相似文献   

17.
The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3H values were around 8 TU in 2015, short-term 3H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006–2015 supplement adding to the Danube isotope set published earlier.  相似文献   

18.
    
The present study examines the isotopic and hydrochemical composition of 18 inland spring waters and 3 coastal karstic spring waters, covering the period between October 2005 and March 2008. The stable isotopes (18O, 2H) processing has revealed the absence of significant evaporation phenomena and that the origin of fresh water samples is meteoric. Using 18O values in rainfall waters, an average line of isotopic depletion with altitude has been constructed, extracting a rate of?0.45‰/100 m as typical for the study area. Furthermore, the mean altitude of recharge of the springs has been estimated by plotting the groundwater sampling points on a δ18O versus altitude diagram. Hydrochemistry results have shown that the dissolution of carbonate, flysch and ophiolitic formations defines the hydrochemical characteristics of groundwater. Moreover, seawater intrusion in the coastal area is significantly high, causing the water in the three karstic springs to be brackish.  相似文献   

19.
    
In the Basin and Range Province of the Southwestern U.S.A., deep carbonate groundwater has been suggested as a significant source to many overlying basin-fill alluvial aquifer systems. Notwithstanding, testing this hypothesis is limited by obtaining data from such considerable depths and complex geology.

This study uses δ2H and δ18O data from springs, rivers, and wells tapping shallow basin-fill groundwater to test the hydrochemical interpretation of deep regional carbonate groundwater flow into the basin-fill aquifers. Stable isotopic and major ion attributes of hydrochemical facies suggest basin-fill alluvial groundwater of the Lower Virgin River Basin is a mixture of precipitation recharge within the Lower Virgin River Basin or the Clover and Escalante Desert Basin northwards, and the deep carbonate flow. The data support the conclusions that in the Lower Virgin River Basin, deep carbonate groundwater is an important source to the alluvial aquifer system and likely accounts for approximately 50% of the alluvial aquifer groundwater. Na+, K+, and SO42– increase in the basin-fill alluvial groundwaters outside the Virgin River floodplain appears to be related with upwelling of deep regional groundwater, and indicating that the chemical character of the basin-fill alluvial groundwaters are related to the deeper flow systems.  相似文献   


20.
ABSTRACT

The Lake Chad Basin (LCB) is an endorheic transboundary catchment highly vulnerable to drought. For effective groundwater management, recharge areas need identification and replenishment quantification. At present, little research exploring unsaturated zone water flow processes and groundwater recharge are available. In this study, 12 vertical soil profiles were analysed for stable water isotopes and chloride concentration to estimate evaporation and groundwater renewal. Most δ18O and δ2H isotope profiles reveal typical arid environment patterns, with maximum enrichment at depths between 2.5 and 20?cm and depletion towards the surface (atmospheric influence) and depth (mixing and diffusion). Average annual dry season evaporation rates in Salamat and Waza Logone range from 5 to 30?mm, in Bahr el Ghazal and Northern Lake Chad from 14 to 23?mm. According to the chloride mass balance (CMB), the average annual recharge rate is estimated between 3 and 163?mm in Salamat and Waza Logone and less than 1 mm in Bahr el Ghazal and Northern Lake Chad. Based on the CMB results, potential recharge sites were identified, while estimated soil evaporation corresponds to plant water use at the initial growing stage, which is an important component in irrigation water management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号