首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constitutive equations are often used to describe the stress-strain behaviour of metallic materials. This allows the execution of parametric studies for various purposes. Despite the large number of developed stress-strain equations, all frequently applied ones fail to accurately describe a strain hardening behaviour in two distinct stages, which many metallic materials tend to show. For this purpose, the authors developed a new stress-strain model, based on the well-known Ramberg-Osgood equation, which focuses on this two-stage strain hardening behaviour. This article describes the model and its analytical background, along with a graphical method to derive suited model parameters. To validate the proposed methodology, it is applied on stress-strain curves of two high-strength steels, an aluminium alloy and a duplex stainless-steel alloy. Whereas a good correspondence for the stainless-steel alloy is confined to limited plastic strains, excellent agreements are observed for the steels and the aluminium alloy. Following the proposed method, it was possible to obtain model parameter values that give a good correspondence within a detectable strain range.  相似文献   

2.
The present study aims at characterizing the post-necking strain hardening behavior of three sheet metals having different hardening behavior. Standard tensile tests were performed on sheet metal specimens up to fracture and heterogeneous logarithmic strain fields were obtained from a digital image correlation technique. Then, an appropriate elasto-plastic constitutive model was chosen. Von Mises yield criterion under plane stress and isotropic hardening law were considered to retrieve the relationship between stress and strain. The virtual fields method (VFM) was adopted as an inverse method to determine the constitutive parameters by calculating the stress fields from the heterogeneous strain fields. The results show that the choice of a hardening law which can describe the hardening behavior accurately is important to derive the true stress–strain curve. Finally, post-necking hardening behavior was successfully characterized up to the initial stage of localized necking using the VFM with Swift and modified Voce laws.  相似文献   

3.
We present a systematic investigation on the strain hardening and texture evolution in high manganese steels where twinning induced plasticity (TWIP) plays a significant role for the materials' plastic deformation. Motivated by the stress–strain behavior of typical TWIP steels with compositions of Fe, Mn, and C, we develop a mechanistic model to explain the strain-hardening in crystals where deformation twinning dominates the plastic deformation. The classical single crystal plasticity model accounting for both dislocation slip and deformation twinning are then employed to simulate the plastic deformation in polycrystalline TWIP steels. While only deformation twinning is activated for plasticity, the simulations with samples composed of voronoi grains cannot fully capture the texture evolution of the TWIP steel. By including both twinning deformation and dislocation slip, the model is able to capture both the stress–strain behaviors and the texture evolution in Fe–Mn–C TWIP steel in different boundary-value problems. Further analysis on the strain contributions by both mechanisms suggests that deformation twinning plays the dominant role at the initial stage of plasticity in TWIP steels, and dislocation slip becomes increasingly important at large strains.  相似文献   

4.
The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at first. It leads by min-max duality to the definition of dual static and kinematic safety coefficients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coefficient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coefficients are obtained.  相似文献   

5.
Finite element (FE) simulations of the simple shear test were conducted for 1050-O and 6022-T4 aluminum alloy sheet samples. Simulations were conducted with two different constitutive equations to account for plastic anisotropy: Either a recently proposed anisotropic yield function combined with an isotropic strain hardening law or a crystal plasticity model. The FE computed shear stress–shear strain curves were compared to the experimental curves measured for the two materials in previous works. Both phenomenological and polycrystal approaches led to results consistent with the experiments. These comparisons lead to a discussion concerning the assessment of anisotropic hardening in the simple shear test.  相似文献   

6.
This paper presents a separated law of hardening in plasticity with strain gradient effects. The value of the length parameter ℓ contained in this model was estimated from the experimental data for copper. The project supported by the National Natural Science Foundation of China  相似文献   

7.
8.
The behavior of a model of single-crystal strain-gradient viscoplasticity is investigated. The model is an extension of a rate-independent version, and includes a new hardening relation that has recently been proposed in the small-deformation context (Gurtin and Reddy, 2014), and which accounts for slip-system interactions due to self and latent hardening. Energetic and dissipative effects, each with its corresponding length scale, are included. Numerical results are presented for a single crystal with single and multiple slip systems, as well as an ensemble of grains. These results provide a clear illustration of the effects of accounting for slip-system interactions.  相似文献   

9.
The initial plastic anisotropy parameters are conventionally determined from the Lankford strain ratios defined by rψ=ε22pψε33pψ (ψ being the direction of the loading path). They are usually considered as constant parameters that are determined at a given value of the plastic strain far from the early stage of the plastic flow (i.e. equivalent plastic strain of εeqp=0.2%) and typically at an equivalent plastic strain in between 20% and 50% of plastic strain failure (or material ductility). What prompts to question about the relevance of this determination, considering that this ratio does not remain constant, but changes with plastic strain. Accordingly, when the nonlinear evolution of the kinematic hardening is accounted for, the Lankford strain ratios are expected to evolve significantly during the plastic flow.In this work, a parametric study is performed to investigate the effect of the nonlinear kinematic hardening evolution of the Lankford strain ratios for different values of the kinematic hardening parameters. For the sake of clarity, this nonlinear kinematic hardening is formulated together with nonlinear isotropic hardening in the framework of anisotropic Hill-type (1948) yield criterion. Extension to other quadratic or non-quadratic yield criteria can be made without any difficulty. This parametric study is completed by studying the effect of these parameters on simulations of sheet metal forming by large plastic strains.  相似文献   

10.
The logarithmic or Hencky strain measure is a favored measure of strain due to its remarkable properties in large deformation problems. Compared with other strain measures, e.g., the commonly used Green-Lagrange measure, logarithmic strain is a more physical measure of strain. In this paper, we present a Hencky-based phenomenological finite strain kinematic hardening, non-associated constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The derivation is based on the multiplicative decomposition of the deformation gradient into elastic and inelastic parts, and on the use of the isotropic property of the Helmholtz strain energy function. We also use the fact that the corotational rate of the Eulerian Hencky strain associated with the so-called logarithmic spin is equal to the strain rate tensor (symmetric part of the velocity gradient tensor). Satisfying the second law of thermodynamics in the Clausius-Duhem inequality form, we derive a thermodynamically-consistent constitutive model in a Lagrangian form. In comparison with the available finite strain models in which the unsymmetric Mandel stress appears in the equations, the proposed constitutive model includes only symmetric variables. Introducing a logarithmic mapping, we also present an appropriate form of the proposed constitutive equations in the time-discrete frame. We then apply the developed constitutive model to shape memory alloys and propose a well-defined, non-singular definition for model variables. In addition, we present a nucleation-completion condition in constructing the solution algorithm. We finally solve several boundary value problems to demonstrate the proposed model features as well as the numerical counterpart capabilities.  相似文献   

11.
In crystalline materials, the experimental observation of the localization of plastic strains in particular directions is generally restricted to the surface of a sample containing some hundreds of grains, because of the difficulties underlying microstructural analysis. In these conditions, the determination of the morphological characteristics of localization can be limited by the poor statistical representativity of the domain of observation. The purpose of this work is to extend the analysis of localization – localization bands or else – to the 3D elastoplastic strain fields of a high-resolution representative volume element of a polycrystal.  相似文献   

12.
An elasto-plastic constitutive model with the plastic strain rate potential was developed for finite element analysis. In the model, isotropic-kinematic hardening was incorporated under the plane stress condition for anisotropic sheet cubic metal forming analysis. The formulation is general enough for any homogeneous plastic strain rate potential (with the first-order homogeneous effective strain rate) but the plastic strain rate potential Srp2004-18p was considered here. Attention was focused on the development of the elasto-plastic transition criterion and the effective stress update algorithm. Also, to assure the quadratic convergence rate in Newton’s method, the elasto-plastic tangent modulus was analytically derived. Accuracy and convergence of the stress update algorithm were assessed by the iso-error maps, whereas stability of the algorithm was confirmed by analytical procedure. Validations were performed for the examples of the circular cup drawing, 2D draw-bending and unconstrained cylindrical bending tests, utilizing aluminum sheet alloys.  相似文献   

13.
在Von-Mises屈服准则及正交流动准则的前提下,建立了循环载荷下叠加型A-F(Armstrong-Frederick)非线性随动强化模型的迭代算法,并根据塑性应变增量的收敛控制实现内部的平衡迭代。为验证本文数值方法的正确性,以Chaboche和Ohno-Abde-Karim随动硬化模型为例,将本文方法的计算结果与通用有限元软件ANSYS的分析结果及试验数据进行了比较,均吻合良好,验证了本文算法的可靠性。  相似文献   

14.
The fabrication of a special kind of dual-phase composite consisting of a hard matrix and ductile phase, such as metals with bimodal grain size distribution, is a promising strategy for improving the tensile ductility of nanocrystalline (nc)/ultrafine-grained (ufg) materials (Wang et al., 2002). This strategy is, however, challenged by the low reproducibility from low controllability of microstructural parameters and the existence of counterexamples (Prasad et al., 2009). The key to meet these challenges is to control the bimodal microstructural parameters to enable quantificational investigation of the relation between mechanical properties and microstructural parameters, and then set up a correlative quantitative model. In this paper, a new micromechanical model based on the propagation and multiplication of localized deformation bands is developed. To assess the model, a series of hypo-eutectoid Cu–Al alloys with controllable bimodal structures are prepared and their stress–strain curves in tension, together with those of bimodal copper (Wang et al., 2002) and bimodal Al–Mg alloys (Han et al., 2005) are predicted. Close agreement between the model-predicted and experimental results is obtained. The strength and uniform ductility of bimodal materials are observed in strong relation to the microstructural and constitutive parameters of volume fraction, strain hardening coefficient, and size of the coarse-grained ductile phase. Additionally, appropriate microstructural and constitutive parameters to achieve effective toughening can also be estimated according to the model.  相似文献   

15.
Given the previous complete-potential structure framework [see Int. J. Plasticity 10(3) (1994) 263], together with the notion of strain- and stress- partitioning in terms of separate contributions of several submechanisms (viscoelastic and viscoplastic) to the thermodynamic functions (stored energy and dissipation), see [Int. J. of Plasticity 17(10) (2001) 1305], a detailed viscoelastoplastic multimechanism characterization of a specific hardening functional form of the model is presented and discussed. TIMETAL 21S is the material of choice as a comprehensive test matrix, including creep, relaxation, constant strain-rate tension tests, etc. are available at various temperatures. Discussion of these correlations tests, together with comparisons to several other experimental results, are given to assess the performance and predictive capabilities of the present model particularly with regard to the notion of hardening saturation as well as the interaction of multiplicity of dissipative (reversible/irreversible) mechanisms.  相似文献   

16.
Different phenomenological equations based on plasticity, primary creep (as a viscoplastic mechanism), secondary creep (as another viscoplastic mechanism) and different combinations of these equations are presented and used to describe the material inelastic deformation in uniaxial test. Agreement of the models with experimental results and with the theoretical concepts and physical realities is the criterion of choosing the most appropriate formulation for uniaxial test. A model is thus proposed in which plastic deformation, primary creep and secondary creep contribute to the inelastic deformation. However, it is believed that the hardening parameter is composed of plastic and primary creep parts. Accordingly, the axial plastic strain in a uniaxial test may no longer be considered as the hardening parameter. Therefore, a proportionality concept is proposed to calculate the plastic contribution of deformation.  相似文献   

17.
The main purpose of this work is to present two semi-analytical solutions for the von Mises elastoplasticity model governed by combined linear isotropic-kinematic hardening. The first solution (SOLε) corresponds to strain-driven problems with constant strain rate assumption, whereas the second one (SOLσ) is proposed for stress-driven problems using constant stress rate assumption. The formulas are derived within the small strain theory Besides the new analytical solutions, a new discretized integration scheme (AMε) based on the time-continuous SOLε is also presented and the corresponding algorithmically consistent tangent tensor is provided. A main advantage of the discretized stress updating algorithm is its accuracy; it renders the exact solution if constant strain rate is assumed during the strain increment, which is a commonly adopted assumption in the standard finite element calculations. The improved accuracy of the new method (AMε) compared with the well-known radial return method (RRM) is demonstrated by evaluating two simple examples characterized by generic nonlinear strain paths.  相似文献   

18.
This paper quantifies the effect of strain gradient plasticity (SGP) on crack tip stress elevation for a broad range of applied loading conditions and constitutive model parameters, including both macroscopic hardening parameters and individual material length-scales controlling gradient effects. Finite element simulations incorporating the Fleck-Hutchinson SGP theory are presented for an asymptotically sharp stationary crack. Results identify fundamental scaling relationships describing (i) the physical length-scales over which strain gradients are prominent, and (ii) the degree of stress elevation over conventional Hutchinson-Rice-Rosengren (HRR) fields. Results illustrate that the three length-scale theory predicts much larger SGP effects than the single length-scale theory. Critically, the first length-scale parameter dominates SGP stress elevation: this suggests that SGP effects in fracture can be predicted using the length-scales extracted from nanoindentation, which exhibits similar behavior. Transitional loading/material parameters are identified that establish regimes of SGP relevance: this provides the foundation for the rational application of SGP when developing new micromechanical models of crack tip damage mechanisms and associated subcritical crack propagation behavior in structural alloys.  相似文献   

19.
Compression tests followed by tension tests after re-machining were performed on annealed oxygen-free-high-conductivity copper cylinders. These tests were conducted at nine levels of maximum strain ranging from 5 to 50%. From this data, isotropic and kinematic hardening were calculated using 50, 1000 and 2000 microstrain offset definitions. Both isotropic and kinematic hardening were found to depend on the yield definition. Isotropic hardening, which increased with plastic strain with no signs of saturation, also increased with larger offset definition of yield. Kinematic hardening, which increased to 40% strain and appeared to saturate thereafter, decreased with higher offset definitions of yield.  相似文献   

20.
Bending of strain gradient elastic thin plates is studied, adopting Kirchhoff’s theory of plates. Simple linear strain gradient elastic theory with surface energy is employed. The governing plate equation with its boundary conditions are derived through a variational method. It turns out that new terms are introduced, indicating the importance of the cross-section area in bending of thin plates. Those terms are missing from the existing strain gradient plate theories; however, they strongly increase the stiffness of the thin plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号