首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The phenomenon of earing is investigated in the present study based on the theory of crystal plasticity with the dynamic explicit finite element program developed. Firstly texture analysis is carried out of rolled aluminium alloy Al5052 by means of X-ray technique. Then from the texture coefficients an analytical expression for the orientation distribution function (ODF) is derived making use of the computer algebraic language Mathematica4.0, which makes it easier to discretize the ODF into a series of Eulerian angles representing the distribution of lattices and further the preferred orientation (texture) of crystals of the original sheets. For the polycrystal model, the material is described using crystal plasticity where each material point in grains with each grain modelled as an FCC crystal with 12 distinct slip systems. The modified Taylor theory of crystal plasticity is used and only the initial texture is taken into consideration during large plastic deformation. Numerical simulation of earing has been performed for an aluminium sheet with texture and one with crystals exhibiting random distribution to demonstrate the effect of texture of materials on their plastic anisotropy and formability. Project supported by the National Natural Science Foundation of China (No. 59875025).  相似文献   

2.
The plastic anisotropy of sheet metal is usually caused by preferred orientation of grains, developed by mechanical deformation and thermal treatment. In the present study, a Taylor-like polycrystal model suggested by Asaro and Needleman is applied to investigate the evolution of the anisotropic behavior of a face centered cubic (FCC) polycrystalline metal, which is considered having {111} (110) slip systems, by stretching it along an arbitrary direction after it has undergonea plane-strata compression that rationally simulates the cold rolling process of FCC polycrystalline pure aluminium. By using the Taylor-like polycrystal model, pole figures are obtained to describe the texture development of polycrystalline aggregate after plane-strain compression, and then the plastic anisotropy of polycrystalline aggregate is evaluated by stretching the polycrystalline aggregate in different direction in term of yield stress. According to the results, the contours of longitudinal flow stress in three-dimensional orientation space are given and analyzed. Experiment results similar to the prediction of planar anisotropy can be found inthe literature written by Takahashi et al. that in directly show the correctness of the prediction of non-planar plastic anisotropy by this analysis.  相似文献   

3.
This paper presents a comprehensive experimental and theoretical investigation of the deformation behavior of high-purity, polycrystalline α-titanium under quasi-static conditions at room temperature. The initial material in this study was a cross-rolled plate with a strong basal texture. To quantify the plastic anisotropy and the tension–compression asymmetry of this material, monotonic tensile and compressive tests were conducted, on samples cut along different directions of the plate. A new anisotropic elastic/plastic model was developed to describe the quasi-static macroscopic response of the aggregate. Key in its formulation is the use of an anisotropic yield criterion that captures strength-differential effects and an anisotropic hardening rule that accounts for texture evolution associated to twinning. A very good agreement between FE simulations using the model developed and uniaxial data was obtained.  相似文献   

4.
The influence of texture and grain structure on strain localisation and formability is investigated experimentally and numerically for two AlZnMg alloys. The considered alloys have recrystallised or non-recrystallised grain structure and strong or nearly random texture. The textured materials have rotated cube texture or β-fibre texture of high intensity. A comprehensive test programme, including uniaxial tension tests in three directions, through-thickness compression tests, plane-strain tension tests and double-plate formability tests, is completed to determine the work hardening, plastic anisotropy and formability of the materials. Strain localisation and failure are examined by optical microscopy. Using parts of the test data, an anisotropic plasticity model is calibrated and applied in calculation of forming limit curves, using the Marciniak–Kuczynski (M-K) analysis for anisotropic materials. The formability tests show that the materials with nearly random texture exhibit superior formability. This is mainly attributed to enhanced work hardening for these materials. For the material exhibiting strong β-fibre texture significantly lower formability is found in equibiaxial stretching than in plane strain, while this characteristic is not seen for the material with strong cube texture. The M-K analysis is capable of predicting the major trends of the experiments, and captures the low formability of the alloy with strong β-fibre texture under equibiaxial straining. A numerical study is performed to evaluate the sensitivity of the predicted forming limit curves to parameters not determined experimentally.  相似文献   

5.
A micromechanically based constitutive model for the elasto-viscoplastic deformation and texture evolution of semi-crystalline polymers is developed. The model idealizes the microstructure to consist of an aggregate of two-phase layered composite inclusions. A new framework for the composite inclusion model is formulated to facilitate the use of finite deformation elasto-viscoplastic constitutive models for each constituent phase. The crystalline lamellae are modeled as anisotropic elastic with plastic flow occurring via crystallographic slip. The amorphous phase is modeled as isotropic elastic with plastic flow being a rate-dependent process with strain hardening resulting from molecular orientation. The volume-averaged deformation and stress within the inclusions are related to the macroscopic fields by a hybrid interaction model. The uniaxial compression of initially isotropic high density polyethylene (HDPE) is taken as a case study. The ability of the model to capture the elasto-plastic stress-strain behavior of HDPE during monotonic and cyclic loading, the evolution of anisotropy, and the effect of crystallinity on initial modulus, yield stress, post-yield behavior and unloading-reloading cycles are presented.  相似文献   

6.
Non-linear deformation paths obtained using uniaxial tension followed by simple shear tests were performed for a 1050-O aluminum alloy sheet sample in different specimen orientations with respect to the material symmetry axes. In order to eliminate the time influence, the time interval between the first and second loading steps was kept constant for all the tests. Monotonic uniaxial tension tests interrupted during loading were used to assess the recovery that takes place during this time. In order to eliminate the influence of the initial plastic anisotropy and to compare the results as if the material hardening was isotropic, the flow stress was represented as a function of the plastic work. The behavior of the material after reloading was analyzed in terms of dislocation microstructure and crystallographic texture evolutions. For more quantitative assessment, the full constraints [Int. J. Plasticity 13 (1997) 75] and visco-plastic self-consistent [Acta Metall. Mater. 41 (1993) 2611] polycrystal models were used to simulate the material behavior in the non-linear deformation paths. Based on experimental and simulation results, the relative contributions of the crystallographic texture and dislocation microstructure evolution to the anisotropic hardening behavior of the material were discussed.  相似文献   

7.
A model is proposed that deals with the transient mechanical anisotropy during strain-path changes in metals. The basic mechanism is assumed to be latent hardening or softening of the slip systems, dependent on if they are active or passive during deformation, reflecting microstructural mechanisms that depend on the deformation mode rather than on the crystallography. The new model captures the experimentally observed behaviour of cross hardening in agreement with experiments for an AA3103 aluminium alloy. Generic results for strain reversals qualitatively agree with two types of behaviour reported in the literature – with or without a plateau on the stress–strain curve. The influence of the model parameters is studied through detailed calculations of the response of three selected parameter combinations, including the evolution of yield surface sections subsequent to 10% pre-strain. The mathematical complexity is kept to a minimum by avoiding explicit predictions related directly to underpinning microstructural changes. The starting point of the model is a combination of conventional texture and work hardening approaches, where an adapted full-constraints Taylor theory and a simple single-crystal work-hardening model for monotonic strain are used. However, the framework of the model is not restricted to these particular models.  相似文献   

8.
This paper presents the results of an experimental study of the deformation and structural parameters of 1561 anisotropic alloy. It has been found that the lowest anisotropy factor corresponds to the formation of an ultrafine-grained equiaxed structure under temperature–strain rate conditions of superplasticity.  相似文献   

9.
材料的力学性能,尤其是在有限变形下所呈现的宏观各向异性,是材料结构设计和服役寿命考虑的关键因素。由于宏观模型不能较好地反映材料微观结构(晶粒的形貌和取向等)对宏观塑性各向异性的影响,因此,本文建立了能实际反映晶粒形貌的三维Voronoi模型,并基于晶体塑性理论对铝合金在有限变形下的响应进行计算。首先,建立反映材料微结构的代表性体积单元RVE模型进行计算,并与实验结果进行对比验证。然后,以单向拉伸为例,分析了有限变形过程中试件的晶粒形貌和取向分布等微观因素对宏观各向异性演化的影响,并从材料和结构两个层面讨论了微观结构对宏观力学性能的影响。结果表明,本文模型能够反映微观结构对宏观力学性能的影响,为实际生产制造领域构件的力学性能提供可靠的预测。  相似文献   

10.
The Swift phenomenon, which refers to the occurrence of permanent axial deformation during monotonic free-end torsion, has been known for a very long time. While plastic anisotropy is considered to be its main cause, there is no explanation as to why in certain materials irreversible elongation occurs while in others permanent shortening is observed.In this paper, a correlation between Swift effects and the stress–strain behavior in uniaxial tension and compression is established. It is based on an elastic–plastic model that accounts for the combined influence of anisotropy and tension–compression asymmetry. It is shown that, if for a given orientation the uniaxial yield stress in tension is larger than that in compression, the specimen will shorten when twisted about that direction; however, if the yield stress in uniaxial compression is larger than that in uniaxial tension, axial elongation will occur. Furthermore, it is shown that on the basis of a few simple mechanical tests it is possible to predict the particularities of the plastic response in torsion for both isotropic and initially anisotropic materials. Unlike other previous interpretations of the Swift effects, which were mainly based on crystal plasticity and/or texture evolution, it is explained the occurrence of Swift effects at small to moderate plastic strains. In particular, the very good quantitative agreement between model and data for a strongly anisotropic AZ31–Mg alloy confirm the correlation established in this work between tension–compression asymmetry and Swift effects. Furthermore, it is explained why the sign of the axial plastic strains that develop depends on the twisting direction.  相似文献   

11.
Accurate and reliable predictions of yield surfaces and their evolution with deformation require a better physical representation of the important sources of anisotropy in the material. Until recently, the most physical approach employed in the current literature has been the use of polycrystalline deformation models, where it is assumed that crystallographic texture is the main contributor to the overall anisotropy. However, recent studies have revealed that the grain-scale mesostructural features (e.g. cell-block boundaries) may have a large impact on the anisotropic stress-strain behaviour, as evidenced during strain-path change tests (e.g. cross effect, Bauschinger effect).In previous papers, the authors formulated an extension of the Taylor-type crystal plasticity model by incorporating some details of the grain-scale mesostructural features. The main purpose of this paper is to study the evolution of yield surfaces in single-phase b.c.c. polycrystals during deformation and strain-path changes using this extended crystal plasticity model. It is demonstrated that the contribution of the grain-scale substructure in these metals on yield loci is comparable in magnitude to the effects caused by the differences in texture. Furthermore, it is shown that the shape of yield loci cannot be predicted accurately by the traditional polycrystalline deformation model with equal slip hardening. The trends predicted by the extended crystal plasticity model are in much better agreement with the experimental evidence reported in the literature than those represented in classical treatments by isotropic and kinematic hardening.  相似文献   

12.
The main issues and challenges involved in modeling anisotropic strain hardening and deformation textures in the low stacking fault energy (SFE) fcc metals (e.g. brass) are reviewed and summarized in this paper. The objective of these modeling efforts is to capture quantitatively the major differences between the low SFE fcc metals and the medium (and high) SFE fcc metals (e.g. copper) in the stress–strain response and the deformation textures. While none of the existing models have demonstrated success in capturing the anisotropy in the stress–strain response of the low SFE fcc metals, their apparent success in predicting the right trend in the evolution of deformation texture is also questionable. There is ample experimental evidence indicating that the physical mechanism of the transition from the copper texture to the brass texture is represented wrongly in these models. These experimental observations demonstrate clearly the need for a new approach in modeling the deformation behavior of low SFE fcc metals. This paper reports new approaches for developing crystal plasticity models for the low SFE fcc metals that are consistent with the reported experimental observations in this class of metals. The successes and failures of these models in capturing both the anisotropic strain hardening and the deformation textures in brass are discussed in detail.  相似文献   

13.
Solid phase deformation processing of glassy polymers produces highly anisotropic polymer components as a result of the massive reorientation of molecular chains during the large strain forming operation. Indeed, the polymer preform used as the starting materials is usually anisotropic owing to its prior deformation history. The process end product has often been fashioned for a particular application, i.e. to possess an increased flow strength along a particular axis, thereby exploiting the orientation induced anisotropy effects. The fully three-dimensional issues involved in the use of glassy polymer components include anisotropic flow strenghts, limiting extensibilities, and deformation patterns. These characteristics have been altered by the initial forming operation but are obviously not expected to be enhanced in all directions. The presence of anisotropy in structural components may also lead to premature failure or unexpected shear localization. In this report the effects of initial deformation and the associated anisotropies are investigated through uniaxial compression tests on preoriented polycarbonate (PC) and polymethylmethacrylate (PMMA) specimens. The evolving anisotropy is monitored by testing materials preoriented by various amounts of strain and under different states of deformation. The tensorial nature of the anisotropic material is characterized by examining the preoriented material response in three orthogonal directions. A model for the large strain deformation response of glassy polymers has been shown by Arruda and Boyce [in press] to be well predictive of the evolution of anisotropy during deformation in initially isotropic materials. Here the authors evaluate the ability of the model developed in Arruda and Boyce [in press] to predict several aspects of the anisotropic response of preoriented materials. Using material properties determined from the characterization of the isotropic material response and a knowledge of the anisotropic state of the preoriented material, model simulations are shown to accurately capture all aspects of the large strain anisotropic response including flow strengths, strain hardening characteristics, cross-sectional deformation patterns, and limiting extensibilities. Although anisotropy has been shown to evolve with temperature and strain rate in Boyce, Arruda and Jayachandran [in press] and also state of deformation in Arruda and Boyce [in press], we submit an experimental observation that the subsequent deformation response of preoriented polymers may be predicted using only a measure of optical anisotropy, and not the prior strain or thermal history. Optical anisotropy, as measured for example by birefringence, therefore represents a true internal variable indicative of the evolution of anisotropy with inelastic strain, state of strain, and temperature.  相似文献   

14.
To consider the anisotropic damage in fatigue, an improved boom-panel model is presented to simulate a representative volume element(RVE) in the framework of continuum damage mechanics. The anisotropic damage state of the RVE is described by the continuity extents of booms and panels, whose damage evolutions are assumed to be isotropic. The numerical implementation is proposed on the basis of damage mechanics and the finite element method. Finally,the approach is applied to the fatigue life prediction of 2A12-T4 aluminium alloy specimen under cyclic loading of tension-torsion. The results indicate a good agreement with the experimental data.  相似文献   

15.
Consideration of plastic anisotropy is essential in accurate simulations of metal forming processes. In this study, finite element (FE) simulations have been performed to predict the plastic anisotropy of sheet metals using a texture- and microstructure-based constitutive model. The effect of crystallographic texture is incorporated through the use of an anisotropic plastic potential in strain-rate space, which gives the shape of the yield locus. The effect of dislocation is captured by use of a hardening model with four internal variables, which characterize the position and the size of the yield locus. Two applications are presented to evaluate the accuracy and the efficiency of the model: a cup drawing test and a two-stage pseudo-orthogonal sequential test (biaxial stretching in hydraulic bulging followed by uniaxial tension), using an interstitial-free steel sheet. The experimental results of earing behavior in the cup drawing test, maximum pressure and strain distribution in bulging, and transient hardening in the sequential test are compared against the FE predictions. It is shown that the current model is capable of predicting the plastic anisotropy induced by both the texture and the strain-path change. The relative significance of texture and strain-path change in the predictions is discussed.  相似文献   

16.
The drawing or rolling process endows polycrystal shape memory alloy with a crys- tallographic texture, which can result in macroscopic anisotropy. The main purpose of this work is to develop a constitutive model to predict the thermomechanical behavior of shape memory alloy sheets, which accounts for the crystallographic texture. The total macroscopic strain is decom- posed into elastic strain and macro-transformation strain under isothermal condition. Considering the transformation strain in local grains and the orientation distribution function of crystallo- graphic texture, the macro-transformation strain and the effective elastic modulus of textured polycrystal shape memory alloy are developed by using tensor expressions. The kinetic equation is established to calculate the volume fraction of the martensite transformation under given stress. Furthermore, the Hill's quadratic model is developed for anisotropic transformation hardening of textured SMA sheets. All the calculation results are in good agreement with experimental data, which show that the present model can accurately describe the macro-anisotropic behaviors of textured shape memory alloy sheets.  相似文献   

17.
The temperature influence on the mechanical behaviour during plastic deformation of an AA5754-O aluminium alloy has been investigated by several experimental tests. First, monotonous tensile tests were carried out from room temperature up to 200°C with a classical tensile machine and with a less conventional testing apparatus involving the heating of the sample by Joule effect. With this second testing apparatus, the strain fields and tensile curves were obtained in function of temperature by means of a non-contacting optical 3D deformation measuring system. Moreover, shear tests were performed in the same temperature range. It is shown that the anisotropy coefficients are rather constant within this temperature range, with a relative variation less than 8%. For both tensile and shear tests, the stress levels are similar at the beginning of straining at room temperature and 150°C, except that the Portevin?CLe Chatelier (PLC) phenomenon disappears at elevated temperature, and then evolves differently. At 200°C, the stress level is clearly below whatever the deformation. In the framework of drawing process, the formability of this alloy at temperatures higher than 150°C seems to be improved.  相似文献   

18.
提出了利用率相关晶体塑性模型标定织相可调本构模型的求解步骤,得出了一组依赖于晶粒间相互作用假设而独立于具体板材织构的本构相关系数.以此为基础再结合板材织构系数所得出的本构模型系数可避免出现屈服面非外凸的情形.利用所提求解步骤对在不同热处理条件下产生不同织构的AL5052铝合金板的深拉成形过程进行了有限元模拟.结果再现了典型织构在板材成形过程中所出现的塑性各向异性,从而表明求解步骤的可行性.  相似文献   

19.
Debonding of rigid inclusions embedded in the elastic–plastic aluminum alloy Al 2090-T3 is analyzed numerically using a unit cell model taking full account of finite strains. The cell is subjected to overall biaxial plane strain tension and periodical boundary conditions are applied to represent arbitrary orientations of plastic anisotropy. Plastic anisotropy is considered using two phenomenological anisotropic yield criteria, namely Hill [Proceedings of the Royal Society of London A 193 (1948) 281] and Barlat et al. [International Journal of Plasticity 7 (1991) 693]. For this material plastic anisotropy delays debonding compared to plastic isotropy except for the case of Hill’s yield function when the tensile directions coincided with the principal axes of anisotropy. For some inclinations of the principal axes of anisotropy relative to the tensile directions, the stress strain responses are identical but the deformation modes are mirror images of each other.  相似文献   

20.
The effect of an anisotropic thermal diffusivity tensor on the free convective boundary-layer flow in porous media is studied. Convection is induced by a generally inclined, uniformly heated surface embedded in a fluid-saturated medium. A third-order boundary-layer theory is presented in order to obtain accurate information on the effect of anisotropy on the rate of heat transfer into the porous medium. It is shown that the thickness of the resulting leading order boundary-layer flow depends on the precise nature of the anisotropy. On the other hand, the anisotropic diffusivity does not induce a fluid drift in the spanwise direction, a result which is different from that obtained in our earlier study of the effects of an anisotropic permeability. It is found that the second order temperature field does not contribute to the overall rate of heat transfer. Finally, we show that the third-order correction to the leading-order rate of heat transfer is given in terms of an explicit formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号