首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Effects of copper salts containing different anions (SO(4)(2)(-), Cl(-), and NO(3)(-)) on the self-assembly of a designed peptide EAK16(II)GGH with affinity for Cu(2+) have been investigated. The peptide secondary structure, self-assembled nanostructures, and surface activity were observed to depend strongly on the type of anion. Over a salt concentration range from 0.05 to 10.0 mM, SO(4)(2)(-) induced long fiber formation, whereas Cl(-) and NO(3)(-) caused short fiber formation. The fiber length increased with copper sulfate concentration, but the concentration of copper chloride and copper nitrate did not affect the peptide nanostructures significantly. Analysis by Fourier transform infrared spectroscopy (FTIR) revealed that the addition of the copper salts tended to cause the peptide conformation to change from alpha-helix/random coil to beta-sheet, the extent to which depended on the anion type. This evidence of the anion effect was also supported by surface tension measurements using the axisymmetric drop shape analysis-profile (ADSA-P) technique. An explanation for the effect of anions on the peptide self-assembly was proposed. The divalent anion SO(4)(2)(-) might serve as a bridge by electrostatically interacting with two lysine residues from different peptide molecules, promoting beta-sheet formation. The extensive beta-sheet formation may further promote peptide self-assembly into long fibers. On the other hand, monovalent anions Cl(-) and NO(3)(-) may only electrostatically interact with one charged residue of the peptide; hence, a mixed secondary structure of alpha-helix/random coil and beta-sheet was observed. This observation might explain the predominant formation of short fibers in copper chloride and copper nitrate solutions.  相似文献   

2.
The reactivity of ruthenium(II)- and ruthenium(III)-chloride-dimethyl sulfoxide precursors and of the antimetastatic drug [ImH][trans-RuCl(4)(dmso-S)(Im)] (NAMI-A, Im = imidazole, dmso = dimethyl sulfoxide) toward NO was investigated. Treatment of [(dmso)(2)H][trans-RuCl(4)(dmso-S)(2)] and mer-RuCl(3)(dmso)(3) with gaseous NO yielded [(dmso)(2)H][trans-RuCl(4)(dmso-O)(NO)] (1) and mer,cis-RuCl(3)(dmso-O)(2)(NO) (2), respectively. Thus, coordination of the strong pi-acceptor NO induces a S to O linkage isomerization of the dmso trans to it to avoid competition for pi-electrons. In light-protected nitromethane solutions, complex 2 equilibrates slowly with the two isomers mer-RuCl(3)(dmso-S)(dmso-O)(NO) (3), with NO trans to Cl, and mer-RuCl(3)(dmso-S)(dmso-O)(NO) (4), with NO trans to dmso-O; the equilibrium mixture consists of ca. 64% 2, 3% 3, and 33% 4. Treatment of the Ru(II) precursor trans-RuCl(2)(dmso-S)(4) with gaseous NO in CH(2)Cl(2) solution yielded the nitrosyl-nitro derivative trans,cis,cis-RuCl(2)(dmso-O)(2)(NO)(NO(2)) (5). Finally, [(Im)(2)H][trans-RuCl(4)(Im)(NO)] (6) was prepared by treatment of [ImH][trans-RuCl(4)(dmso-O)(NO)] (1Im) with an excess of imidazole in refluxing acetone. The spectroscopic features are consistent with the [Ru(NO)](6) formulation for all complexes, that is, a diamagnetic Ru(II) nucleus bound to NO(+). Compounds 1, 2, 5, and 6 were characterized also by X-ray crystallography; they all show a linear nitrosyl group, with short Ru-NO bond distances consistent with a strong d(pi) --> pi NO back-bonding. An unusual inertness of O-bonded dmso was observed in compound 1. Complexes 1, 2, 3, 5, and 6 are all redox active in DMF solutions showing irreversible reductions whose peak potentials depend on the other ligands attached to the Ru metal center. The site of reduction is the NO(+) moiety. The reduced complexes are not stable and release a Cl(-) or NO(2)(-) ligand followed by the NO(*) radical. The chemical reactions following electron transfer are all fast (rate constant >100 s(-1) at 293 K). The Ru product species are not redox active within the DMF window.  相似文献   

3.
The binding behavior of triphenylene based copper ensemble prepared in situ has been investigated toward various anions (F(-), Cl(-), Br(-), I(-), CH(3)COO(-), H(2)PO(4)(-), NO(3)(-), OH(-), ClO(4)(-), CN(-), CO(3)(-) and SO(4)(-)) by UV-vis and fluorescence spectroscopy. Among various anions tested, 1-Cu(2+) ensemble shows selective and sensitive response towards cyanide ions and responds to CN(-) ions even in the presence of bovine serum albumin and in blood serum milieu. Further, as practical application of compound 1, we utilized the TLC strips coated with THF solution of 1 for the solid state detection of copper and cyanide ions.  相似文献   

4.
Silica gel bearing isonicotinamide groups was prepared by further modification of 3-aminopropyl-functionalized silica by a reaction with isonicotinic acid and 1,3-dicyclohexylcarbodiimide to yield 3-isonicotinamidepropyl-functionalized silica gel (ISNPS). This support was characterized by means of infrared spectroscopy, elemental analysis, and specific surface area. The ISNPS was used to immobilize the [Ru(NH(3))(4)SO(3)] moiety by reaction with trans-[Ru(NH(3))(4)(SO(2))Cl]Cl, yielding [Si(CH(2))(3)(isn)Ru(NH(3))(4)(SO(3))]. The related immobilized [Si(CH(2))(3)(isn)Ru(NH(3))(4)(L)](3+/2+) (L=SO(2), SO(2-)(4), OH(2), and NO) complexes were prepared and characterized by means of UV-vis and IR spectroscopy, as well as by cyclic voltammetry. Syntheses of the nitrosyl complex were performed by reaction of the immobilized ruthenium ammine [Si(CH(2))(3)(isn)Ru(NH(3))(4)(OH(2))](2+) with nitrite in acid or neutral (pH 7.4) solution. The similar results obtained in both ways indicate that the aqua complex was able to convert nitrite into coordinated nitrosyl. The reactivity of [Si(CH(2))(3)(isn)Ru(NH(3))(4)(NO)](3+) was investigated in order to evaluate the nitric oxide (NO) release. It was found that, upon light irradiation or chemical reduction, the immobilized nitrosyl complex was able to release NO, generating the corresponding Ru(III) or Ru(II) aqua complexes, respectively. The NO material could be regenerated from these NO-depleted materials obtained photochemically or by reduction. Regeneration was done by reaction with nitrite in aqueous solution (pH 7.4). Reduction-regeneration cycles were performed up to three times with no significant leaching of the ruthenium complex.  相似文献   

5.
A new salicylate-selective PVC membrane electrode based on a new Schiff base tetranuclear copper complex of O-vannlin-methionine (Cu(II)(4)-TVM) as a neutral carrier is described. This electrode displays a preferential potentiometric response to salicylate and an anti-Hofmeister selectivity sequence in the following order: Sal(-) > ClO(4)(-) > SCN(-) > I(-) > NO(2)(-) > NO(3)(-) > Br(-) > Cl(-) > SO(3)(2-) > SO(4)(2-) > H(2)PO(4)(-). The electrode exhibits near-Nernstian potential linear range of 1.5 x 10(-6)-1.0 x 10(-1) M with a detection limit of 8.0 x 10(-7) M and a slope of -56.3 mV/decade in pH 3.0-8.0 of phosphorate buffer solution at 20 degrees C. Thanks to the tetranuclear copper(II) in the carrier, the electrode has the advantages of simplicity, fast response, fair stability and reproducibility and low detection limit. The response mechanism to the electrodes is discussed by the a.c. impedance technique and the UV spectroscopy technique. The electrode can be applied to analyses of medicine and the results obtained are in fair agreement with the results given by a standard method.  相似文献   

6.
X-ray absorption fine structure (XAFS) measurements have been performed at -50 degrees C on a 0.4 mol dm(-)(3) copper(II) nitrate solution in liquid ammonia. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination number and bond distances for the solvated copper(II) ion in solution. The equatorial ammonia nitrogens are located 2.00 ? from the copper and the axial nitrogen 2.19 ? from the copper. However, it was not possible from the EXAFS analysis alone to conclude whether there was one or two axial nitrogens. Therefore, X-ray absorption near-edge structure (XANES) spectroscopy was combined with discrete variational Xalpha (DV-Xalpha) molecular orbital calculations for a series of five- and six-coordinated models to determine the coordination number and the geometry. The experimental XANES spectrum was best reproduced by a model where the copper(II) ion is pentacoordinated in liquid ammonia in a square pyramidal geometry with the copper(II) ion lifted above the average nitrogen plane.  相似文献   

7.
Moses CO  Nordstrom DK  Mills AL 《Talanta》1984,31(5):331-339
Interpreting the redox chemistry of sulphur in aqueous systems requires the analysis of mixtures of various sulphoxy anions. Previous methods have been too involved to permit high sample throughout if good quality control is to be maintained. Methods based on ion chromatography have been developed for the direct determination of SO(2-)(4), SO(2-)(3), S(2)O(2-)(3), and SCN(-). The determination of thiocyanate permits the indirect determination of polythionates by treatment with cyanide. Formate, acetate, F(-), Cl(-), CO(2-)(3), and PO(3-)(4), do not interfere, but NO(-)(2) and NO(-)(3) interfere with determination of SO(2-)(3),. The sample preservation treatment includes addition of formaldehyde, cation-exchange and cold storage, to retard oxidation of S(2)O(2-)(3), and SO(2-)(3), and inhibits the rearrangement of SO(2-)(3),/S(2)O(2-)(3),/S(n)O(2-)(6), mixtures caused by bimolecular nucleophilic displacement (S(N)2) reactions. Treated samples may be stored for up to 6 weeks with only minor loss of thiosulphate.  相似文献   

8.
The inclusion of inorganic anions such as SO(4)(2-), NO(3)(-), and HPO(4)(2-) into the cavity of β-cyclodextrin monolayers on Au was examined by X-ray photoelectron spectroscopy (XPS), a quartz crystal microbalance (QCM), and chronocoulometric measurements of the competitive inclusion with ferrocene. The inclusion amounts of ferrocence in 0.2 M Na(2)SO(4), NaNO(3), and Na(2)HPO(4) solutions were less than 6% of the adsorption amount of β-cyclodextrin on Au, resulting in the apparent inhibition of the ferrocene redox reaction. The surface association constants of these anions reached about 10 on a logarithmic scale and were much higher than those for the inclusion of common organic guest compounds. A stronger anion inclusion was also demonstrated by the QCM response corresponding to the replacement of a preincluded organic guest with sulfate upon the injection of the sulfate solution. Quantitative analysis of the XPS data suggested a 1:1 association for each of these anions per surface β-cyclodextrin. There was no detectable inclusion for ClO(4)(-), Cl(-), and Br(-).  相似文献   

9.
Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.  相似文献   

10.
A novel and unique understanding pertaining to the synthesis of Cu(1.8)S and CuS in bulk was achieved from the analysis of the products of the Cu-Tu precursors, with Cl(-), NO(3)(-), and SO(4)(2-) as the counteranions, in ethylene glycol. [Cu(4)(tu)(9)](NO(3))(4)·4H(2)O always yielded CuS whether the dissociation was carried out in ethylene glycol in the presence of air or argon or under solvothermal conditions. Cu(1.8)S was the only product when [Cu(tu)(3)]Cl was dissociated in air as well as in flowing argon in ethylene glycol. A mixture of Cu(1.8)S and CuS was formed from the chloride ion containing precursor when dissociated solvothermally. [Cu(2)(tu)(6)]SO(4)·H(2)O yielded a mixture of CuS and Cu(1.8)S on dissociation in the presence of air and argon, as well as under solvothermal conditions. The oxidizing power of the anions Cl(-), SO(4)(2-), and NO(3)(-), present in the precursor, greatly determined the extent of formation of Cu(1.8)S and CuS. While Cu(1.8)S showed hexagonal plate like morphology, flower like morphology was observed for CuS in the SEM images. In the mixed phase, Cu(1.8)S + CuS, both these morphologies were present. Cu(1.8)S and CuS showed scattering resonances at 470 cm(-1) and 474 cm(-1), respectively, in the Raman spectrum. Magnetization measurements at room temperature revealed diamagnetic behavior for Cu(1.8)S indicating the presence of +1 oxidation state for copper. Weak paramagnetic behavior was observed for CuS with χ(M) value of 1.198 × 10(-3) emu/mol at 300 K. Both Cu(1.8)S and CuS showed similar emission behavior in the photoluminescence spectrum with band positions centered at around 387, 390, 401, 423, and 440 nm. The origin of photoluminescence in these two copper sulfides remains elusive.  相似文献   

11.
Lee CM  Chen CH  Chen HW  Hsu JL  Lee GH  Liaw WF 《Inorganic chemistry》2005,44(19):6670-6679
The five-coordinated iron-thiolate nitrosyl complexes [(NO)Fe(S,S-C6H3R)2]- (R = H (1), m-CH3 (2)), [(NO)Fe(S,S-C6H2-3,6-Cl2)2]- (3), [(NO)Fe(S,S-C6H3R)2]2- (R = H (10), m-CH3 (11)), and [(NO)Fe(S,S-C6H2-3,6-Cl2)2]2- (12) have been isolated and structurally characterized. Sulfur oxygenation of iron-thiolate nitrosyl complexes 1-3 containing the {Fe(NO)}6 core was triggered by O2 to yield the S-bonded monosulfinate iron species [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]- (R = H (4), m-CH3 (5)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2(2-) (6), respectively. In contrast, attack of O2 on the {Fe(NO)}7 complex 10 led to the formation of complex 1 accompanied by the minor products, [Fe(S,S-C6H4)2]2(2-) and [NO3]- (yield 9%). Reduction of complexes 4-6 by [EtS]- in CH3CN-THF yielded [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]2- (R = H (7), m-CH3 (8)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2- (9) along with (EtS)2 identified by 1H NMR. Compared to complex 10, complexes 7-9 with the less electron-donating sulfinate ligand coordinated to the {Fe(NO)}7 core were oxidized by O2 to yield complexes 4-6. Obviously, the electronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in complexes 7-9 may serve to regulate the reactivity of complexes 7-9 toward O2. The iron-sulfinate nitrosyl species with the {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety. Complexes 1-4-7-10 (or 2-5-8-11 and 3-6-9-12) are interconvertible under sulfur oxygenation, redox processes, and photolysis, respectively.  相似文献   

12.
Halide-centered hexanuclear, anionic copper(II) pyrazolate complexes [trans-Cu(6)((3,5-CF(3))(2)pz)(6)(OH)(6)X](-), X = Cl, Br, I are isolated in a good yield from the redox reaction of the trinuclear copper(I) pyrazolate complex [μ-Cu(3)((3,5-CF(3))(2)pz)(3)] with a halide source such as PPh(3)AuCl or [Bu(4)N]X, X = Cl, Br, or I, in air. X-ray structures of the anion-centered hexanuclear complexes show that the six copper atoms are bridged by bis(3,5-trifluoromethyl)pyrazolate and hydroxyl ligands above and below the six copper atom plane. The anions are located at the center of the cavity and weakly bound to the six copper atoms in a μ(6)-arrangement, Cu-X = ~3.1 ?. A nitrite-centered hexanuclear copper(II) pyrazolate complex [trans-Cu(6)((3,5-CF(3))(2)pz)(6)(OH)(6)(NO(2))](-) was obtained when a solution of [PPN]NO(2) in CH(3)CN was added dropwise to the trinuclear copper(I) pyrazolate complex [μ-Cu(3)((3,5-CF(3))(2)pz)(3)] dissolved in CH(3)CN, in air. Blue crystals are produced by slow evaporation of the acetonitrile solvent. The X-ray structure of [PPN][trans-Cu(6)((3,5-CF(3))(2)pz)(6)(OH)(6)(NO(2))] complex shows the nitrite anion sits in the hexanuclear cavity and is perpendicular to the copper plane with a O-N-O angle of 118.3(7)°. The (19)F and (1)H NMR of the pyrazolate ring atoms are sensitive to the anion present in the ring. Anion exchange of the NO(2)(-) by Cl(-) can be observed easily by (1)H NMR.  相似文献   

13.
The aggregation behaviors of meso-tetrakis(p-sulfonatophenyl)porphyrin (TPPS) in the function of metal ions and their counter anions (Cl(-), SO(4)(2-), and NO(3)(-)) were investigated by absorption, fluorescence spectroscopy and resonance scattering spectrum. It was shown that the TPPS J-aggregates could be effectively promoted by metal ions under lower ionic strength. Moreover, the prominent effects of counter ions (Cl(-), SO(4)(2-), and NO(3)(-)) on TPPS J- and/or H-aggregate formation at higher ionic strength were observed. These results suggested that the counter anions play a significant role in the formation of TPPS J- and/or H-aggregates and their conversion each other. Very interestingly, the absorption spectrum of metal ions investigated except for Co(2+) leaves a WINDOW from ca. 450 to 550nm centered at 490nm in which the absorption of Cu(2+) or Ni(2+) ions per se was very weak. The spectrum window might be really significant in avoiding possible spectrum interferences when porphyrins are chosen as spectrometric reagents for the determination of metal ions based on J-aggregation.  相似文献   

14.
Mason S  Hamon R  Zhang H  Anderson J 《Talanta》2008,74(4):779-787
The effect of potential chemical constraints on the performance of two relatively new soil P testing methods, anion exchange membrane (AEM) and diffusive gradients in thin films (DGT), were evaluated. Exposures to ranges of anion (Cl(-), NO(3)(-), SO(4)(2-) and HCO(3)(-)) concentrations relevant to agricultural soils had minimal effect on P recoveries using DGT. It has also been shown previously that DGT P recoveries are unaffected by varying pH (3-9). In contrast, increasing NO(3)(-) and SO(4)(2-) concentrations in solution reduced the recovery of P using the resin method (anion exchange membrane, AEM) by 24% at 50mgL(-1) NO(3)(-) and by 47% at 12mgL(-1) SO(4)(2-) when the P concentration of the test solution was 2mgL(-1). Phosphorus sorption by the resin decreased with increasing Cl(-) concentrations until there was a 100% decrease at 300mgL(-1) Cl(-) when the P concentration of the test solution was 2mgL(-1) and a 92% reduction at 700mgL(-1) Cl(-) when the P concentration of the test solution was 0.2mgL(-1). There was also a small but significant effect of carbonate species on P sorption to the resin at carbonate concentrations that can occur in agricultural soils. Changing the pH of the solution had minimal effects on the resin P measurements in solutions above pH 4, but below pH 4, resin P measurements decreased dramatically. A poor coefficient of determination for the regression fit between DGT and resin measurements on eight agricultural soils suggested that these two methods are measuring different amounts of P for different soils. Resin P measurements increased significantly, but non-uniformly across soils, when the soil:water ratio was decreased but this did not result in an improved relationship with DGT P. There was a minimal effect on measured P using either Cl(-) or HCO(3)(-) as counter ions on the resin.  相似文献   

15.
With the ultimate goal of understanding the Cu(4)S cluster in nitrous oxide reductase, studies of the fundamental chemistry of nitrogen-donor ligand-supported copper-sulfur species have been pursued. Reactions of Cu(II)X(2) (X = Cl(-) or CF(3)SO(3)(-)), N,N,N',N'-tetramethyl-trans-(1R,2R)-diaminocyclohexane, and Li(2)S or Na(2)S(2) yielded clusters that contain [Cu(2)(micro-S(2))(2)](2+), [Cu(3)(micro-S)(2)](3+), [Cu(4)(micro-S(2))(2)](4+), and/or [Cu(6)(micro-S(2))(4)](4+) cores, depending on the specific reaction conditions, notably the nature of X and the sulfur source used. Copper(II) and/or Copper(III) and variable sulfur oxidation levels, including S(2-), S(2)(2-), and S(2)(-*), were identified by X-ray crystallography and spectroscopy.  相似文献   

16.
An isomorphous series of 10 microporous copper-based metal-organic frameworks (MOFs) with the general formulas (∞)(3)[{Cu(3)(μ(3)-OH)(X)}(4){Cu(2)(H(2)O)(2)}(3)(H-R-trz-ia)(12)] (R = H, CH(3), Ph; X(2-) = SO(4)(2-), SeO(4)(2-), 2 NO(3)(2-) (1-8)) and (∞)(3)[{Cu(3)(μ(3)-OH)(X)}(8){Cu(2)(H(2)O)(2)}(6)(H-3py-trz-ia)(24)Cu(6)]X(3) (R = 3py; X(2-) = SO(4)(2-), SeO(4)(2-) (9, 10)) is presented together with the closely related compounds (∞)(3)[Cu(6)(μ(4)-O)(μ(3)-OH)(2)(H-Metrz-ia)(4)][Cu(H(2)O)(6)](NO(3))(2)·10H(2)O (11) and (∞)(3)[Cu(2)(H-3py-trz-ia)(2)(H(2)O)(3)] (12(Cu)), which are obtained under similar reaction conditions. The porosity of the series of cubic MOFs with twf-d topology reaches up to 66%. While the diameters of the spherical pores remain unaffected, adsorption measurements show that the pore volume can be fine-tuned by the substituents of the triazolyl isophthalate ligand and choice of the respective copper salt, that is, copper sulfate, selenate, or nitrate.  相似文献   

17.
Mn(II), Co(II) and Ni(II) complexes of 2-methylcyclohexanone thiosemicarbazone(MCHTSC L(1)) and 2-methylcyclohexanone-(4)N-methyl-3-thiosemicarbazone (MCHMTSC L(2)), general composition [M(L)(2)X(2)] (where M = Mn(II), Co(II), Ni(II), L = L(1) or L(2) and X = Cl(-), NO(3)(-), and [(1/2)SO(4)(2-)) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, UV-vis, IR, EPR, and mass spectral studies. Various physico-chemical techniques suggest an octahedral geometry for all the complexes.  相似文献   

18.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

19.
Two series of octahedral oxovanadium(IV) compounds, containing charged or neutral axial ligands, with the tetradentate amidate molecules Hcapca and H2capcah of the general formulae trans-[V(IV)OX(capca)]0/+ (where X = Cl- (1.CH2Cl2), SCN- (2), N3 (3), CH3COO- (4), PhCOO- (5), imidazole (6. CH3NO2), and eta-nBuNH2 (7)) and cis-[V(VI)OX(Hcapcah)]0/+ (where X = Cl- (8.0.5CH2Cl2), SCN (9), N3 (10.2CH3OH), and imidazole (11)), were synthesized and characterized by X-ray crystallography (1.CH3OH,8.CHCl3, 9.2CH3CN, 10.CH3CN and cis-[VO(imidazole)(Hcapcah)+) and continuous-wave electron paramagnetic resonance (cw EPR) spectroscopy. In addition to the synthesis, crystallographic and EPR studies, the optical, infrared and magnetic properties (room temperature) of these compounds are reported. Ab initio calculations were also carried out on compound 8 CHCl3 and revealed that this isomer is more stable than the trans isomer, in good agreement with the experimental data. The cw EPR studies of compounds 1-5, that is, the V(IV)O2+ species containing monoanionic axial ligands, revealed a novel phenomenon of the reduction of their A, components by about 10% relative to the N4 reference compounds ([V(IV)O-(imidazole)4]2+ and [V(IV)O(2,2-bipyridine)2]2+). In marked contrast, such a reduction is not observed in compounds 6. CH3NO2-11, which contain neutral axial ligands. Based on the spin-Hamiltonian formalism a theoretical explanation is put forward according to which the observed reduction of Az is due to a reduction of the electron - nuclear dipolar coupling (P). The present findings bear strong relevance to cw EPR studies of oxovanadium(IV) in vanadoproteins, V(IV)O2+-substituted proteins, and in V(IV)O2+ model compounds, since the hyperfine coupling constant, Az, has been extensively used as a benchmark for identification of equatorial-donor-atom sets in oxovanadium(IV) complexes.  相似文献   

20.
A new terphenyl based chemosensor 3 has been designed and synthesized. The binding behavior of 3 and its chemosensing ensemble 3-Hg toward various anions (F(-), Cl(-), Br(-), I(-), HSO(4)(-), H(2)PO(4)(-), CH(3)COO(-), NO(3)(-), N(3)(-), SO(4)(2-), SO(3)(2-), and Cr(2)O(7)(2-)) has been investigated by UV-Vis, fluorescence and NMR spectroscopy. Compound 3 shows a sensitivity for both F(-) and CH(3)COO(-) ions among various anions tested, whereas the ensemble 3-Hg shows a better selectivity for CH(3)COO(-) ions. The ensemble is utilized for CH(3)COO(-) recognition in a blood plasma like system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号