首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-bound layers of poly(L-glutamic acid) prepared by a recently described "grafting-from" method were analyzed with respect to electrical charging and structural alterations upon variation of pH and concentration of the background electrolyte in aqueous solutions. The microslit electrokinetic setup (MES) was utilized for the combined determination of zeta potential and surface conductivity on the basis of streaming potential and streaming current measurements at polypeptide layers in contact with aqueous electrolyte solutions of varied composition. In situ ellipsometry was applied at similar samples immersed in identical aqueous solutions to investigate the influence of the solution pH on the structure of the polypeptide layers. Zeta potential and Dukhin number versus pH plots revealed the dissociation behavior of the surface-bound polypeptides indicating a significant shift of the pK of their acidic side chains correlating with the concentration of the background electrolyte potassium chloride and the related variation of the Debye screening length. Surface conductivity data pointed at a more expanded structure of the polypeptide layer in the fully dissociated state as an increased ion conductance in this part of the interface was determined. The occurrence of a strong increase of the thickness and a corresponding decrease of the refractive index for the coil state of the layer strongly supports the findings of the electrokinetic measurements. This fully reversible "switching" of the layer structure was attributed to helix-coil transitions within the grafted polypeptides induced by the dissociation of carboxylic acid functions of the polypeptide side chains. The shift of the "switching pH" of the surface-bound poly(L-glutamic acid) layers at varied concentrations of the background electrolyte was interpreted as a result of the pK shift of the carboxylic acid groups of the polypeptide side chains. The observed patterns prove that the electrostatic interactions causing this shift occur within but not between the grafted chains.  相似文献   

2.
Streaming current measurements were performed on poly(N-isopropylacrylamid-co-carboxyacrylamid) (PNiPAAM-co-carboxyAAM) soft thin films over a broad range of pH and salt concentration (pH 2.5-10, 0.1-10 mM KCl) at a constant temperature of 22 °C. The films are negatively charged because of the ionization of the carboxylic acid groups in the repeat unit of the copolymer. For a given salt concentration, the absolute value of the streaming current exhibits an unconventional, nonmonotonous dependence on pH with the presence of a maximum at pH ~6.4. This maximum is most pronounced at low electrolyte concentration and gradually disappears with increasing salinity. Complementary ellipsometry data further reveal that the average film thickness increases by a factor of ~2.2 with increasing pH over the whole range of salt concentration examined. The larger the solution salt concentration, the lower the pH value where expansion of the hydrogel layer starts to take place. The dependence of film thickness on pH and electrolyte concentration remarkably follows that obtained for surface conductivity. The streaming current and surface conductivity results could be consistently interpreted on a quantitative basis using the theory we previously derived for the electrokinetics of charged diffuse (heterogeneous) soft thin films complemented here by the derivation of a general expression for the surface conductivity of such systems. In particular, the maximum in streaming current versus pH is unambiguously attributed to the presence of an interphasial gradient in polymer segment density following the heterogeneous expansion of the chains within the film upon swelling with increasing pH. A quantitative inspection of the data further suggests that pK values of ionogenic groups in the film as derived from the streaming current and surface conductivity data differ by ~0.9 pH unit. Such a difference is attributed to the impact of position-dependent hydrophobicity across the film on the degree of ionization of carboxylic sites.  相似文献   

3.
Surfaces carrying hydrophilic polymer brushes were prepared from poly(styrene)-poly(acrylic acid) and poly(styrene)-poly(ethylene oxide) diblock copolymers, respectively, using a Langmuir-Blodgett technique and employing poly(styrene)-coated planar glass as substrates. The electrical properties of these surfaces in aqueous electrolyte were analyzed as a function of pH and KCl concentration using streaming potential/streaming current measurements. From these data, both the zeta potential and the surface conductivity could be obtained. The poly(acrylic acid) brushes are charged due to the dissociation of carboxylic acid groups and give theoretical surface potentials of -160 mV at full dissociation in 10(-)(3) M solutions. The surface conductivity of these brushes is enormous under these conditions, accounting for more than 93% of the total measured surface conductivity. However, the mobility of the ions within the brush was estimated from the density of the carboxylic acid groups and the surface conductivity data to be only about 14% of that of free ions. The poly(ethylene oxide) (PEO) brushes effectively screen the charge of the underlying substrate, giving a very low zeta potential except when the ionic strength is very low. From the data, a hydrodynamic layer thickness of the PEO brushes could be estimated which is in good agreement with independent experiments (neutron reflectivity) and theoretical estimates. The surface conductivity in this system was slightly lower than that of the polystyren substrate. This also indicates that no significant amount of preferentially, i.e., nonelectrostatically attracted, ions taken up in the brush.  相似文献   

4.
The Donnan theory is extended to formulate a model for determination of the distribution coefficient of calcium in slurries of fully bleached and unbleached kraft fibers at different pH, taking into account the presence of both carboxylic and phenolic groups in the fibers. The intrinsic dissociation constants of the carboxylic acid groups and phenolic hydroxyl, which are the key inputs of the extended model, were determined by potentiometric titration. The extension improves the model prediction significantly, particularly when the presence of phenolic lignin in fibers becomes significant. However, when the pH exceeds 10, the model underestimates the distribution coefficient, suggesting that other factors may influence the fiber charge. The structural changes of the fiber wall at high pH and the presence of hydroxyl groups on the cellulose, which ionize at high pH, may be major factors.  相似文献   

5.
We have studied theoretically the partition equilibrium of a cationic drug between an electrolyte solution and a membrane with pH-dependent fixed charges using an extended Donnan formalism. The aqueous solution within the fixed charge membrane is assumed to be in equilibrium with an external aqueous solution containing six ionic species: the cationic drug (DH(+)), the salt cations (Na(+) and Ca(2+)), the salt anion (Cl(-)), and the hydrogen and hydroxide ions. In addition to these mobile species, the membrane solution may also contain four fixed species attached to the membrane chains: strongly acid sulfonic groups (SO(3)(-)), weakly acid carboxylic groups in dissociated (COO(-)) and neutral (COOH) forms, and positively charged groups (COO...Ca(+)) resulting from Ca(2+) binding to dissociated weakly acid groups. The ionization state of the weak electrolyte groups attached to the membrane chains is analyzed as a function of the local pH, salt concentration, and drug concentration in the membrane solution, and particular attention is paid to the effects of the Ca(2+) binding to the negatively charged membrane fixed groups. The lipophilicity of the drug is simulated by the chemical partition coefficient between the membrane and external solutions giving the tendency of the drug to enter the membrane solution due to hydrophobic interactions. Comparison of the theoretical results with available experimental data allows us to explain qualitatively the effects that the pH, salt concentration, drug concentration, membrane fixed charge concentration, and Ca(2+) binding exert on the ionic drug equilibrium. The role of the interfacial (Donnan) electric potential difference between the membrane and the external solutions on this ionic drug equilibrium is emphasized throughout the paper.  相似文献   

6.
Conductivity measurements were carried out on a family of polyacrylamide-co-sodium acrylate gels cross-linked with N,N'-methylenebisacrylamide in a homemade electrokinetic cell. The conductivity data allowed the equilibrium Donnan potential difference between the bulk gel and the bulk electrolyte solution to be estimated at various ionic strengths. The data were fit to a simple model assuming full dissociation of functional groups as well as to a more complete model (Dukhin, S. S.; Zimmerman, R.; Werner, C. J. Colloid Interface Sci. 2004, 274, 309) that accounts for the weak electrolyte nature of the acrylate groups fixed within the gel structure. The conductivity of the gel layers was observed to be significantly larger than the conductivity of the bulk electrolyte solutions at low ionic strengths. The increased conductivity reflects the enhanced concentration of ions within the gel structure due to Donnan equilibrium and the mobility of ions within the high water content gel layers. The electrokinetic implications of the bulk conductivity of gel-like soft surface layers are discussed in terms of the influence of the gel conductance on the resulting streaming potential.  相似文献   

7.
Regenerated cellulose films were laminated using very thin layers of the protein Bovine Serum Albumin (BSA) as an adhesive. The wet delamination strength was measured as functions of pH, lamination time, temperature and pressure, as well as cellulose oxidation. Drying at elevated temperature (120 °C) was required for strong adhesion. Oxidation of the cellulose membranes to introduce surface carboxyl/aldehyde groups increased the wet delamination strength by 60%, implying that the peel failures happened at the protein/cellulose interface. The wet delamination force was independent of the pH and ionic strength of solutions used to apply the BSA; whereas adhesion decreased with increasing pH of the rewetting solution. Furthermore, the swelling of the BSA interplay region was also increased at high pH. It is proposed that covalent grafting of BSA onto the oxidized cellulose, and disulfide crosslinking within the protein layer contributed to wet adhesion.  相似文献   

8.
Abstract

Hydrogels of gelatin crosslinked with glutaraldehyde and sodium carboxymethyl cellulose (NaCMC) of several compositions were prepared. The swelling kinetics as a function of composition, temperature. pH, and ionic strength was studied. The rate of swelling and equilibrium swelling were found to depend on the NaCMC content in all cases. The equilibrium swelling increased with the temperature. The gels, which were weakly acidic, registered increased swelling at higher pH. Swelling was suppressed in aqueous salt solutions. In agreement with predictions of the Donnan theory, swelling in monovalent salt solutions is greater than in divalent salt solutions.  相似文献   

9.
Carbonyl and carboxyl groups introduced by oxidative processes during production and purification of celluloses determine intra- and intermolecular interactions and thus application-related bulk and surface properties of cellulosic materials. We report a comprehensive approach to the quantification of carboxyl and carbonyl groups in cellulose films upon reconstitution from NMMO solutions. Measurements of the excess conductivity were combined with the determination of the molecular weight distribution, quantification of the carboxyl and carbonyl group content, crystallinity and film swelling in aqueous solutions. TEMPO-oxidized, NMMO-regenerated cellulose films were additionally analysed as a reference system for extensive cellulose oxidation. Our reported data demonstrate that dissolution of cellulose in NMMO results in the formation of onic acids, chain degradation, increased ionization and film swelling, whereas TEMPO-oxidation introduced carbonyl groups as well as onic and uronic acids causing a significantly increased charging, ion accumulation and swelling even at higher crystallinity.  相似文献   

10.
Hydrophilic polymeric films based on blends of poly(acrylic acid) and poly(vinyl methyl ether) (PVME) were prepared by casting technique and were cross-linked by gamma-radiation. The films are soft and elastic in a dry state and form hydrogels upon immersion in water. Effect of absorbed dose on the gel fraction as well as on the swelling of the films in aqueous solutions of different pH is studied. It was found that addition of lower molecular weight PVME decreases the gelation dose, which is likely related to a decrease in glass transition temperature of the blends. In acidic media the films have low swelling degree because of suppression of carboxylic groups ionisation and formation of additional physical cross-links via interpolymer hydrogen bonding.  相似文献   

11.
This investigation describes the interaction of trimethyl chitosans (TMCs) with surfaces of cellulose thin films. The irreversible deposition/adsorption of TMCs with different degrees of cationization was studied with regards to the salt concentration and pH. As substrates, cellulose thin films were prepared by spin coating from trimethylsilyl cellulose and subsequent regeneration to pure cellulose. The pH-dependent zeta potential of cellulose thin films and the charge of TMCs were determined by streaming potential and potentiometric charge titration methods. A quartz crystal microbalance with dissipation monitoring was further used as a nanogram sensitive balance to detect the amount of deposited TMCs and the swelling of the bound layers. The morphology of the coatings was additionally characterized by atomic force microscopy and related to the adsorption results. A lower degree of cationization leads to higher amounts of deposited TMCs at all salt concentrations. Higher amounts of salt increase the deposition of TMCs. Protonation of primary amino groups results in the immobilization of less material at lower pH values. The results from this work can further be extended to the modification of regenerated cellulosic materials to obtain surfaces, with amino- and trimethylammonium moieties.  相似文献   

12.
Adsorption of zwitterionic drugs (beta-lactam antibiotics and amino acids) onto samples of oxidized cellulose (OC) with various carboxyl contents and structural characteristics from aqueous and water/alcohol solutions was investigated. The adsorption process can be described according to the theory of localized stoichiometric adsorption and represented by Langmuir isotherms. It was established that the constants of interfacial distribution mainly increase with increased relative sorbate hydrophobicity. The dependencies of adsorption on pH of equilibrium drug solution have a maximum at pH 3-3.5, which is caused by peculiarities of dissociation of OC and sorbates. The drug uptake is shown to increase with an increase of alcohol mole fraction in the solution and transfer to the binary water/isopropanol from water/ethanol solutions. The dominant contribution to the increase of uptake is the desolvation of ionic groups of zwitterions in the solution, which increases with increased alcohol content. The degree of crystallinity of the sorbent has no considerable effect on drug adsorption from aqueous solutions. In water/alcohol solutions the adsorption of drugs by OC samples with similar exchange capacity increases with reducted uniformity of carboxylic group distribution in the volume of the polymer, which is connected with increased accessibility of carboxylic groups for sorbate molecules.  相似文献   

13.
We report a comprehensive formalism for the electrokinetics (streaming current, I(str)) at soft multilayered polyelectrolyte films. These assemblies generally consist of a succession of permeable diffuse layers that differ in charge density, thickness, and hydrodynamic softness. The model, which extends one that we recently reported for the electrokinetics of monolayered soft thin films (Langmuir 2010, 26, 18169-18181), is valid without any restriction in the number and thickness of layers, or in the degree of dissociation and density of ionizable groups they carry. It further covers the limiting cases of hard and free draining films and correctly compares to semianalytical expressions derived for I(str) under conditions where the Debye-Hu?ckel approximation applies. The flexibility of the theory is illustrated by simulations of I(str) for a two-layer assembly of cationic and anionic polymers over a large range of pH values and electrolyte concentrations. On this basis, it is shown that the point of zero streaming current (PZSC) of soft multilayered interphases, defined by the pH value where I(str) = 0, generally depends on the concentration of the (indifferent) electrolyte. The magnitude and direction of the shift in PZSC with varying salinity are intrinsically governed by the dissymmetry in protolytic characteristics and density of dissociable groups within each layer constituting the film, together with the respective film thickness and hydrodynamic softness. The fundamental effects covered by the theory are illustrated by streaming current measurements performed on two practically relevant systems, a polyelectrolyte bilayer prepared from poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA) and a polymer-cushioned (PEI) bilayer lipid membrane.  相似文献   

14.
Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 microm in diameter) have been used as colloidal probes. From the streaming potential measurements we determined the zeta-potential of the gold surface, while from the force measurements the diffuse double-layer potential psi(d) was obtained by fitting the data to the DLVO theory or to the nonlinear Poisson-Boltzmann equation. Measured interactions were found to be entirely due to overlap of electric double layers with no indication of attractive Van der Waals forces. Results of both types of measurements are in good agreement. The double layer potential strongly depends on the pH, probably as a result of the presence of oxide species on the gold surface. Insight in the double layer potential of polarizable interfaces such as the gold/electrolyte solution interface is the first step for understanding the effect of externally applied potentials on the adsorption behavior of charged species.  相似文献   

15.
Reactivity and swelling of nanometer films of alternating maleic anhydride copolymers were investigated in dependence on the kind of comonomer and molar mass of copolymer in aqueous solution at pH 7.4 and pH 3.0 in order to reveal their characteristics under physiological conditions. Fully hydrolyzed (maleic acid) chains of the copolymers with styrene, propene, and ethylene comonomers covalently bound to SiO2 substrates showed a "mushroom" swelling behavior at pH 7.4 with a layer thickness scaling of N3/5. Decreasing the environmental pH was found to induce a comonomer-dependent shrinking or collapse of the immobilized polymers due to the change in ionization. From the swelling kinetics of non-hydrolyzed chains, the time constants and characteristics of swelling and anhydride hydrolysis were determined and found to depend on the type of comonomer. The short- and long-term swelling kinetics [l approximately t and approximately ln(t)1/2] were found to be in agreement with theoretical models of polymer swelling, while at intermediate time scales enhanced swelling was observed due to hydrolysis reaction of maleic anhydride groups. The findings elucidate the variety of properties of maleic anhydride copolymer films under physiological conditions, which can advantageously be applied for biofunctionalization of different templates.  相似文献   

16.
We developed a carbohydrate sensing material, which consists of a crystalline colloidal array (CCA) incorporated into a polyacrylamide hydrogel (PCCA) with pendent boronic acid groups. The embedded CCA diffracts visible light, and the PCCA diffraction wavelength reports on the hydrogel volume. This boronic acid PCCA responds to species containing vicinal cis diols such as carbohydrates. This PCCA photonic crystal sensing material responds to glucose in low ionic strength aqueous solutions by swelling and red shifting its diffraction as the glucose concentration increases. The hydrogel swelling results from a Donnan potential due to formation of boronate anion; the boronic acid pK(a) decreases upon glucose binding. This sensing material responds to glucose and other sugars at <50 microM concentrations in low ionic strength solutions.  相似文献   

17.
The response of unentangled polymer thin films to aqueous hydroxide solutions is measured as a function of increasing weakly acidic methacrylic acid comonomer content produced by an in situ reaction-diffusion process. Quartz crystal microbalance with energy dissipation and Fourier transform infrared spectroscopy measurements are used to identify four regimes: (I) nonswelling, (II) quasiequilibrium swelling, (III) swelling coupled with partial film dissolution, and (IV) film dissolution. These regimes result from chemical heterogeneity in local composition of the polymer film. The acid-catalyzed deprotection of a hydrophobic group to the methacrylic acid tends to increase the hydrophilic domain size within the film. This nanoscale structure swells in aqueous base by ionization of the methacrylic acid groups. The swollen film stability, however, is determined by the hydrophobic matrix that can act as physical cross-links to prevent dissolution of the polyelectrolyte chains. These observations challenge current models of photoresist film dissolution that do not include the effects of swelling and partial film dissolution on image quality.  相似文献   

18.
Optical waveguide spectroscopy (OWS) was employed to monitor the swelling behavior of pulsed plasma polymerized maleic anhydride (PPPMA) films in humid air and in aqueous solutions by measuring the film thicknesses and refractive indices. With the relative humidity of air increasing, both the thickness and the refractive index of the PPPMA films increased, indicating water penetration into and uptake by the films. The swelling of the hydrated PPPMA films in humid air is reversible. In aqueous media, the thickness and the refractive index of the washed PPPMA film increased with an increase of pH and ionic strength, respectively. On the basis of the present data, a hypothesis concerning the structure of the PPPMA film is proposed. Our model suggests that the unique structure of the PPPMA films originates from the cyclic structure of maleic anhydride and depends on parameters of the plasma deposition process, and the interaction between H(2)O and the carboxylic groups.  相似文献   

19.
Poly (methacrylic acid) gels (PMAA gels) of various degrees of crosslinking were prepared and the dissociation behavior of these gels was examined; the swelling behavior was investigated as a function of the solution pH values. A reentrant phenomenon of swelling was observed and interpreted based on the Flory-Huggins equation and the Donnan equilibrium formula. Moreover, adsorption of L-lysine, oligo(L-lysine)s (Lys-n,n=3, 9, and 19) and poly(L-lysine) onto PMAA gels from aqueous solutions was investigated under different conditions of pH and concentration of adsorbate. The adsorption ratio of L-lysine onto PMAA gel is dependent on both the pH of solution and the degree of crosslinking. In a pH range between 8 and 9, the protonated form of L-lysine is strongly adsorbed on the PMAA gel by electrostatic interactions. Oligomers and polymer of L-lysine are adsorbed in a somewhat different way from the monomeric L-lysine. In addition, the desorption behavior of L-lysine from PMAA gels by a change in pH was also investigated.  相似文献   

20.
PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IR/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane surface, treated membranes had a more flexible zeta potential range than that of the untreated membrane in the pH range of 3–9. They were all negative in pure water and 1 g·L−1 KCl solution, while the membranes hydrolyzed for 30 min and 50min had IEPs at pH 5.5 and 6.1 in 1 g·L−1 MgCl2 solution. Special inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号