首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We review some recent progress in experimental studies of the adsorption hysteresis of simple molecules in ordered mesoporous silicas. We show that the nature of the adsorption hysteresis due to capillary condensation can be examined with less ambiguity by measuring the hysteresis loop for the ordered mesoporous silicas with three types of pore geometries (cylindrical, interconnected cylindrical, and interconnected spherical) over a wide temperature range. The adsorption hysteresis arises from the metastability of a confined phase and the temperature at which the hysteresis disappears is lower than the critical temperature of vapor-liquid equilibrium in pores. The hysteresis occurs mainly on the desorption rather than adsorption branch, irrespective of the pore geometries.  相似文献   

4.
We report experimental nitrogen adsorption isotherms of organics-coated silicas, which exhibit a low-pressure desorption branch that does not meet the adsorption branch upon emptying of the pores. To address the physical origin of such a hysteresis loop, we propose an equilibrium thermodynamic model that enables one to explain this phenomenon. The present model assumes that, upon adsorption, a small amount of nitrogen molecules penetrate within the organic layer and reach adsorption sites that are located on the inorganic surface, between the grafted or adsorbed organic molecules. The number of accessible adsorption sites thus varies with the increasing gas pressure, and then we assume that it stays constant upon desorption. Comparison with experimental data shows that our model captures the features of nitrogen adsorption on such hybrid organic/inorganic materials. In particular, in addition to predicting the shape of the adsorption isotherm, the model is able to estimate, with a reasonable number of adjustable parameters, the height of the low-pressure hysteresis loop and to assess in a qualitative fashion the local density of the organic chains at the surface of the material.  相似文献   

5.
The systematic investigation of the hysteresis phenomena in finite-sized slitlike nanopores via the Aranovich-Donohue (AD) lattice density functional theory (LDFT) is presented. The new reliable quantitative modeling of the adsorption and desorption branch of the hysteresis loop, through the formation and movement of the curved meniscus, is formulated. As a result, we find that our proposal, which closely mimics the experimental findings, can reproduce a rounded shape of the desorption branch of the hysteresis loop. On the basis of the exhausted commutations, we proved that the hysteresis loop obtained in the considered finite-sized slitlike geometry is of the H1 type of the IUPAC classification. This fundamental result and the other most important results do not confirm the results of the recent studies of Sangwichien et al., whereas they fully agree with the recent lattice studies due to Monson et al. We recognize that the nature of the hysteresis loops (i.e. position, width, shape, and the multiple steps) mainly depends on the value of the energy of both the adsorbate-adsorbate and adsorbate-adsorbent interactions; however, the first one is critical for the appearance of hysteresis. Thus, for relatively small adsorbate-adsorbate interactions, the adsorption-desorption process is fully reversible in the whole region of the bulk density. We show that the strong adsorbate-adsorbent interactions produce (also observed experimentally) multiple steps within hysteresis loops. Contrary to the other studies of the hysteresis phenomena in confined geometry via the LDFT formalism, we constructed both ascending and descending scanning curves, which are known from the experimental observations. Additionally, we consider the problem of the stability of both the obtained adsorption and desorption branches of the computed hysteresis loop in finite-sized slitlike nanopores.  相似文献   

6.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   

7.
This numerical simulation paper focuses on the adsorption/desorption of water in disordered mesoporous silica glasses (Vycor-like). The numerical adsorbent was previously obtained by off lattice method, and was shown to reproduce quite well the micro- and mesotextural properties of real Vycor, as well as morphological (pore size distribution) and topological (pore interconnections) disorder. The water-water interactions are described by the SPC model while water-silica interactions are calculated in the framework of the PN-TrAZ model. The water adsorption/desorption isotherms and the configurational energies are calculated by the Grand Canonical Monte Carlo simulation method. The low pressure results compare well with experiments, showing the good transferability of the intermolecular potential. It is shown that if the hysteresis loop observed in the adsorption/desorption isotherm is considered as a true phase transition (which is actually still an open question in the case of disordered porous materials), then it is possible to calculate the grand potential by applying the thermodynamic integration scheme. The grand potential is shown to be multivalued for low (subcritical) temperature, and continuous for high (supercritical) temperature. A coexistence point is found within the hysteresis loop, actually close to the vertical desorption line. Below the equilibrium chemical potential, the gaslike branch is stable whereas the liquidlike branch is metastable. The situation is reversed above the coexistence point.  相似文献   

8.
Bin grand canonical Monte Carlo simulations have been carried out to study adsorption–desorption of argon at 87.3 K in a model ink-bottle mesoporous solid in order to investigate the interplay between the pore blocking process, controlled by the evaporation through the pore mouth via the meniscus separating the adsorbate and the bulk gas surroundings, and the cavitation process, governed by the instability of the stretched fluid (with a decrease in pressure) in the cavity. The evaporation mechanism switches from pore blocking to cavitation when the size of the pore neck is decreased, and is relatively insensitive to the neck length under conditions where cavitation is the controlling mechanism. We have applied the recently-developed Mid-Density scheme to determine the equilibrium branch of the hysteresis loop, and have found that, unlike ideal simple pores of constant size and infinite length, where the equilibrium transition is vertical, the equilibrium branch of an ink-bottle pore has three distinct sub-branches within the hysteresis loop. The first sub-branch is steep but continuous and is close to the desorption branch (which is typical for a pore with two open ends); this is associated with the equilibrium state in the neck. The third sub-branch is much steeper and is close to the adsorption branch (which is typical for either a pore with one end closed or a closed pore), and is associated with the equilibrium state in the cavity. The second sub-branch, connecting the other two sub-branches, has a more gradual slope. The domains of these three sub-branches depend on the relative sizes of the cavity and the neck, and their respective lengths. Our investigation of the effects of changing neck length clearly demonstrates that cavitation depends, not only on fluid properties, as frequently stated, but also on pore geometry.  相似文献   

9.
Water vapor adsorption equilibria on activated carbons typically exhibit hysteresis. The size and shape of the hysteresis loop which separates the adsorption and desorption branches is a strong function of the pore size and interconnectivity of the pores. Neither conventional pore filling models nor statistical thermodynamics approaches provide a means for predicting the extent of hysteresis from only adsorption measurements. This work uses the Kelvin Equation in conjunction with the structural concept of a stochastic pore network to describe measured water isotherms on BPL carbon. Using a pore segment distribution function determined from the adsorption branch, it is shown that totally random assemblies underestimate the extent of hysteresis. It is possible, however, to closely fit the measured BPL-water hysteresis loop using a patchy heterogeneity in which a proportion of the larger pores are preferentially located on the exterior, mid-range pores are concentrated in a sub-surface layer and some large pores form shielded voids behind much smaller pores.Nomenclature p vapor phase partial pressure of sorbate - p sat saturation vapor pressure of sorbate - R gas constant - r pore radius - T absolute temperature - t adsorbed layer thickness - V L molar volume of adsorbed phase - surface tension - contact angle  相似文献   

10.
气固吸附等温线的研究进展   总被引:39,自引:0,他引:39  
综述了近些年来在气固吸附理论研究领域对吸附等温线的研究进展。论述了从早期的BDDT的5种类型吸附等温线,到IUPAC的6种类型吸附等温线,再到基于Ono-kondo晶格模型的Gibbs吸附分类的5种类型吸附等温线.讨论了与各种类型吸附等温线类型相对应的吸附机理,并对滞留回环现象进行了解释和分析。  相似文献   

11.
An equation containing a correction for the structural characteristics of the adsorbents and adsorbates was proposed for the determination of the coordinates of the initial point of the hysteresis loop on the adsorption isotherms of the vapor of various types of compounds. The applicability of the equation to four different adsorption systems was tested by comparing the calculated results with data determined from the isotherm.  相似文献   

12.
To verify pore blocking controlled desorption in ink-bottle pores, we measured the temperature dependence of the adsorption-desorption isotherms of nitrogen on four kinds of KIT-5 samples with expanded cavities hydrothermally treated for different periods of time at 393 K. In the samples, almost spherical cavities are arranged in a face-centered cubic array and the cavities are connected through small channels. The pore size of the channels increased with an increase in the hydrothermal treatment time. At lower temperatures a steep desorption branch changed to a gradual one as the hydrothermal treatment was prolonged. For the sample hydrothermally treated only for 1 day, the rectangular hysteresis loop shrank gradually with increasing temperature while keeping its shape. The temperature dependence of the evaporation pressure observed was identical with that expected for cavitation-controlled desorption. On the other hand, for the samples hydrothermally treated for long times, the gradual desorption branch became a sharp one with increasing temperature. This strongly suggests that the desorption mechanism is altered from pore blocking to cavitation with temperature. Application of percolation theory to the pore blocking controlled desorption observed here is discussed.  相似文献   

13.
Grand canonical Monte Carlo simulations are performed to determine the adsorption/desorption isotherms at different temperatures of a Lennard-Jones fluid confined within a simple model of cylindrical pores presenting chemical heterogeneities. A complex hysteresis loop is observed, showing hysteresis subloops (scanning curves). This is shown to be consistent with the existence of several metastable states (local minima in the system free energy). A recent extension to the Gibbs ensemble technique is then used to calculate the complete coexistence diagram of these local minima.  相似文献   

14.
The use of colloidal crystals with various primary particle sizes as templates leads to the formation of three-dimensionally ordered mesoporous (3DOm) carbons containing spherical pores with tailorable pore size and extremely high pore volumes. We present a comprehensive structural characterization of these novel carbons by using nitrogen (77.4 K) and argon (87.3 K) adsorption coupled with the application of novel, dedicated quenched solid density functional theory (QSDFT) methods which assume correctly the underlying spherical pore geometry and also the underlying adsorption mechanism. The observed adsorption isotherms are of Type IV with Type H1-like hysteresis, despite the fact that pore blocking affects the position of the desorption branch. This follows also from detailed, advanced scanning hysteresis experiments which not only allow one to identify the underlying mechanisms of hysteresis, but also provide complementary information about the texture of these unique porous materials. This work addresses the problem of pore size analysis of novel, ordered porous carbons and highlights the importance of hysteresis scanning experiments for textural analysis of the pore network.  相似文献   

15.
Air conditioning and dehumidifying systems based on sorption on solids are of great interest, especially in humid climates, because they allow reduction of thermal loads and use of chlorofluorocarbons. Previous studies have shown that hydrophilic polymers such as sulfonic polymers can have very high performance in water adsorption from air. The aim of this study was to characterize the water vapor adsorption properties of fully sulfonated and monosulfonated poly(styrenesulfonic acid), sodium salt, and to elucidate the mechanism of adsorption on these materials. Adsorption isotherms have been determined by TGA between 298 and 317 K for pressures ranging from 0.1 to 45 hPa. They have type II of the IUPAC classification and a small hysteresis loop between adsorption and desorption processes was observed only for the monosulfonated sample. Water content is up to 80% weight at 80% relative humidity. Adsorption isotherms have been well fitted with the FHH model. Adsorption–desorption isobars have been determined by TGA under 37 hPa in the temperature range 298–373 K. They show that these polymers can be completely regenerated by heating at 313 K under humidified air. No degradation of the adsorption properties has been observed after several regenerations. Adsorption enthalpies and entropies have been deduced from the Clapeyron equation and from DSC measurements. A good agreement was found. A mechanism of adsorption is proposed considering two kinds of adsorbate: bounded water in electrostatic interaction with functional groups and free water resulting from condensation.  相似文献   

16.
A Monte Carlo simulation method is used to study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shell and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 nm using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch.  相似文献   

17.
The possibility of determining the function characterizing the connectedness of pores of different types and sizes from the experimental adsorption isotherms is discussed. It is shown that the presence of joints of pores manifests itself by two indications in phase diagrams and adsorption isotherms that contain hysteresis loops. The first indication is related to the appearance of an additional phase transition in the phase diagram and/or a density jump in the isotherm. The second indication is related to different numbers of density jumps in the desorption and adsorption branches of adsorption isotherms. The character of the behavior of the adsorption branch of the isotherm in the case of the presence of regions of joints in a porous system is established.  相似文献   

18.
We study by means of Grand Canonical Monte Carlo simulations the condensation and evaporation of argon at 77 K in nanoporous silica media of different morphology or topology. For each porous material, our results are compared with data obtained for regular cylindrical pores. We show that both the filling and emptying mechanisms are significantly affected by the presence of a constriction. The simulation data for a constricted pore closed at one end reproduces the asymmetrical shape of the hysteresis loop that is observed for many real disordered porous materials. The adsorption process is a quasicontinuous mechanism that corresponds to the filling of the different parts of the porous material, cavity, and constriction. In contrast, the desorption branch for this pore closed at one end is brutal because the evaporation of Ar atoms confined in the largest cavity is triggered by the evaporation of the fluid confined in the constriction (which isolates the cavity from the gas reservoir). This evaporation process conforms to the classical picture of "pore blocking effect" proposed by Everett many years ago. We also simulate Ar adsorption in a disordered porous medium, which mimics a Vycor mesoporous silica glass. The adsorption isotherm for this disordered porous material having both topological and morphological defects presents the same features as that for the constricted pore (quasicontinuous adsorption and steep desorption process). However, the larger degree of disorder of the Vycor surface enhances these main characteristics. Finally, we show that the effect of the disorder, topological and/or morphological, leads to a significant lowering of the capillary condensation pressure compared to that for regular cylindrical nanopores. Also, our results suggest that confined fluids isolated from the bulk reservoir evaporate at a pressure driven by the smallest size of the pore.  相似文献   

19.
Many polymeric substrates which swell on adsorption exhibit sorption hysteresis; the phenomenon is most striking for water sorption by natural polymers and proteins. Some interpretations of hysteresis for swelling systems have invoked the concept that there are more active sites available for association with sorbate during desorption than for adsorption to the same relative pressure. Chemical modification of hydrophilic groups, which markedly alters the amount of water sorbed by keratin, or the filling of possible voids in the substrate has little effect on keratin-water vapor sorption hysteresis. Sorption in swelling systems occurs by a coupled diffusion-relaxation mechanism. It is demonstrated that the occurrence of hysteresis is associated with the stress relaxation of the cohesive forces opposing swelling. Changes in the structural conformation may be considered as the variable which differs between the adsorption and desorption states. The segmentai mobility of the macromolecular chains plays a major role in the irreversibility of the sorption isotherm, leading to wide diversity in hysteresis effects in polymers.  相似文献   

20.
Abstract

The effect of soil composition on the adsorption and desorption of the herbicide thiazafluron [1.3-dimethyl-1-(5-trifluoromethyl-1,2,3-thiadiazol-2-yl) urea] by 20 soil samples of 13 selected soil profiles of southern Spain has been studied. The adsorption curves conformed the Freundlich equation and the values of the constants, Kf and nf, ranged from 0.13 to 4.64 and from 0.14 to 1.30, respectively. The simple and multiple regression analysis between Kf and soil properties revealed soil clay content, illite content and CEC as fundamental factors determining thiazafluron adsorption by soils. Unlike other substituted ureas, non significant correlation was found with soil organic matter. Desorption of thiazafluron was hysteretic in all cases, showing and values much lower than those for adsorption. Desorption kinetic indicated that this hysteresis is essentially due to irreversible adsorption, although some degradation seems also to occur. The Freundlich desorption Kfd values were closely related to the same factors as Kf: clay and illite contents and also montmorillonite content, suggesting that most of the hysteresis was due to thiazafluron irreversibly bound to soil clay mineral components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号