共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation of N-Methyl-N-chlornitryl Hexafluoro Metallates ON(Cl)CH3+MF6? (M = As, Sb) . The preparation of ON(Cl)CH3+MF6? (M = As, Sb) by methylation of ONCl with CH3OSO+MF6? (M = As, Sb) is reported. Both salts were unlimited stable at - 78°C. The nitryl cation which is isoelectronic with acetyl chloride was identified by vibrational spectroscopy as N-chloro-N-hydroxy-methaneiminium cation in the solid state. 相似文献
2.
Preparation of the Halogenonitrilium Salts XCNH+MF6− (X = CI, Br, I; M = As, Sb) and the Trifluoroacetonitrilium Salts CF3CNH+MF6− The halogenonitrilium salts XCNH+MF6− (X = CI, Br, I; M = As, Sb) are synthesized by protonation of cyanogen halides in the superacide system HF/MF5 at low temperature. The synthesis of trifluoroacetonitrilium salts CF3CNH+MF6− (M = As, Sb) is proceeded analogous with trifluoroacetonitrile. All salts are characterized by vibrational and NMR spectroscopy. 相似文献
3.
Preparation of Dichlornitronium-hexafluoroarsenate and -hexafluoroantimonate ONCl2+MF6?(M = As, Sb) The preparation of ONCl2+MF6? (M = As, Sb) by oxidative chlorination of CNCl with Cl2/AsF5 and Cl2/SbF5 is reported. Both salts are characterized by Raman Spectroscopy. The difficulties in evaluating a force field for the cation are discussed. 相似文献
4.
Preparation and Spectroscopic Characterization of the Fluorophosphonium Salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) The preparation of the fluorophosphonium salts X2FPSCH3+MF6? (X = Br, Cl; M = As, Sb) and XF2PSCH3+SbF6? (X = Br, Cl, F) by methylation of the corresponding thiophosphorylhalides in the system CH3F/SO2/MF5 (M = As, Sb) is reported. The new salts are characterized by their vibrational and NMR spectra. 相似文献
5.
Synthesis and Spectroscopic Characterization of the Cyanonitrilium Salts NCCNH+MF?6 and the N-Methyl-cyanonitrilium Salts NCCNCH3+MF6? (M = As, Sb) The cyanonitrilium salts NCCNH+MF?6 (M = As, Sb) are prepared by protonation of cyanogene (CN)2 in the superacid HF/MF5 at 195 K. The synthesis of the N-methyl-cyanonitrilium salts NCCNCH3+MF6? (M = As, Sb) is proceeded by methylation of cyanogene by CH3OSO+MF6? in SO2 also at low temperature. All salts are characterized by vibrational and NMR spectra. 相似文献
6.
Preparation of N-Methylhalidonitrilium Salts XCNCH3+MF6? (X = Cl, Br, I; M = As, Sb) and the N-Methyl-trifluoroacetonitrilium Salts CF3CNCH3+MF6? The N-methyl-halidonitrilium salts XCNCH3+MF6? (X = Cl, Br, I; M = As, Sb) are synthesized by methylation of cyanogen halides with CH3F/MF5 in SO2 at low temperatures. The N-methyl-trifluoroacetonitrilium salts CF3CNCH3+MF6? (M = As, Sb) are formed analogous with trifluoroacetonitrile. All salts are characterized by vibrational and NMR spectroscopy. 相似文献
7.
Preparation of CF3SClF+MF6? (M = As, Sb) and Crystal Structure of CF3SCl2+SbF6? CF3SClF+MF6? (M = As, Sb) is prepared by oxidative fluorination of CF3SCl with XeF+MF6?. The new salt is characterized by IR, Raman and NMR spectra in comparison with CF3SF2+MF6? and CF3SCl2+MF6?. In SO2 solution CF3SClF+SbF6? symmetrizises into CF3SF2+SbF6? and crystalline CF3SCl2+SbF6? with the monoclinic space group P21/c with a = 773.5(14) pm, b = 954.8(15) pm, c = 1242.0(18) pm, β = 100.24(8)°, Z = 4. 相似文献
8.
The Preparation of Methylthio(trihalogeno)phosphonium Salts ClnBr3?nPSCH3+MF6?(n = 0–3; M = As, Sb) and Hal3PSCH3+SbCl6?(Hal = Br, Cl) The methylthio(trihalogeno) phosphonium salts BrnCl3?nPSCH3+MF6? (n = 0–3; M = As, Sb) are prepared by methylation of the corresponding thiophosphorylhalides BrnCl3?nPS in the system SO2/CH3F/MF5. The hexachloroantimonates Hal3PSCH3+SbCl6?(Hal = Br, Cl) are synthesized by thiomethylation of PBr3 and PCl3 with CH3SCl/SbCl5. All salts are characterized by vibrational and NMR spectroscopy. 相似文献
9.
About the Preparation of N-Chloro-N-Methylammonium Salts (CH3)nNCl4–n+MF6? (n = 1–3; M = As, Sb) and (CH3)2NClX+MF6? (X = F, Br) Simple one-step methods for the preparation of the methylated chloroammonium salts (CH3)nNCl4–n+MF6? (n = 1–3; M = As, Sb) and for (CH3)2NClX+MF6? (X = F, Br) are reported. Their vibrational and NMR-spectroscopical data are discussed in comparison. 相似文献
10.
Synthesis of the Dichloromethyleneiminium Salts Cl2C?NClH+MF6? and Cl2C?NClCH3+ MF6? (M = As, Sb) and Crystal Structure of Dichloromethyleneiminium-hyxachloroantimonate Cl2C?NH2+SbCl6? The N-chloro-dichloromethyleneiminium salts Cl2C=NCIH+MF6? (M = As, Sb) are prepared by protonationof trichloromethyleneimine in the superacide system HF/MF5 at 195 K. The synthesis of the N-chloro-N-methyl-dichloromethyleneiminium salts Cl2C?NClCH3+MF6? (M = As, Sb) is proceeded by methylation of perchloromethylenimine by CH3OSO+MF6? in SO2 also at low temperature. All salts are characterized by vibrational and NMR spectra. The dichloromethyleneiminiumhexachloroantimonate crystallizes in the space group P21/c with a = 971.3(4)pm, b = 1134.0(4)pm, c = 2154.2(7)pm β = 102.04(3)° and Z = 8. 相似文献
11.
Dimethyl(methanesulfinyl)sulfonium Hexafluorometallates (CH3)2SS(O)CH3+MF6? (M = As, Sb) and the Crystal Structure of Methanesulfinylchloride CH3S(O)Cl [1] The preparation of dimethyl(methanesulfinyl)sulfoniumhexafluorometallates (CH3)2SS(O)CH3+MF6? (M = As, Sb) and the spectroscopic characterization of the new thiosulfonium salts are described. Alternatively they can be obtained from methylmethanethiosulfinate by methylation. In addition the crystal structure of methanesulfinylchloride CH3S(O)Cl at 113 K is reported. The compound crystallizes in the monoclinic space group P21/n with a = 528.2(1), b = 829.2(2), c = 880.9(2) pm, β = 90.48(2)° and Z = 4. 相似文献
12.
13.
14.
CF3S(O)F, (CF3)2SO, CF3SF3, (CF3)2SF2, and SF4 react in different manner with XeF+MF6? (M?As, Sb). An oxidative fluorination is observed by CF3S(O)F forming the persulfonium salt CF3S(O)F2+SbF6?, whereas by (CF3)2SO a simple addition product containing xenon can be isolated in form of the sulfonium salt (CF3)2SOXeF+SbF6?. On the contrary, the Lewis-acidic character of the XeF+-cation predominates against (CF3)nSF4?n (n = 0 ? 2) leading to the corresponding fluorosulfonium salts (CF3)nSF3?n +MF6? (M?As, Sb) and XeF2. 相似文献
15.
16.
17.
Gas Phase Structure of CF3NCl2 and Preparation of CF3NCl2F+MF6? (M = As, Sb) and CF2 = NCl2F+SbF6? The gas phase structure of CF3NCl2 is reported. The following skeletal parameters are derived (ra-values, error limits are 3σ values): N? C = 1.470(6) Å, N? Cl = 1.733(3) Å, ClNCl = 111.5(4)° and ClNC = 107.6(5)°. CF3NCl2F+MF6? is prepared by fluorination of CF3NCl2 with XeF+MF6?. The same educt CF3NCl2 reacts with XeF+SbF6? at ?40°C to CF2 = NClF+SbF6? under elimination of ClF. 相似文献
18.
CASSCF–MRMP2 calculations have been carried out to analyze the reactions of the methyl fluoride molecule with the atomic ions Ge+, As+, Se+ and Sb+. For these interactions, potential energy curves for the low‐lying electronic states were calculated for different approaching modes of the fragments. Particularly, those channels leading to C? H and C? F oxidative addition products, H2FC? M? H+ and H3C? M? F+, respectively were explored, as well as the paths which evolve to the abstraction (M? F++CH3) and the elimination (CH2M++HF) asymptotes. For the reaction Ge++CH3F the only favorable channel leads to fluorine abstraction by the ion. As+ and Sb+ can react with CH3F along pathways yielding stable addition products. However, a viable path joining the oxidative addition product H3C? M? F+ with the elimination asymptote CH2M++HF was found for the reaction of the fluorocarbon compound with As+. No favorable channels were detected for the interaction of fluoromethane with Se+. The results discussed herein allow rationalizing some of the experimental data found for these interactions through gas‐phase mass spectrometry. 相似文献
19.
《Journal of Coordination Chemistry》2012,65(19):3373-3383
Two [V15M6(OH)6O42(Cl)]7? (M = Si for 1, Ge for 2) cluster anions with protonated amines as counterions have been synthesized under hydrothermal conditions and characterized by FT-IR, energy dispersive spectroscopy, XPS, powder X-ray diffraction, thermogravimetric analysis (TGA), elemental analysis, and single-crystal X-ray analyses. Both compounds consist of {V15M6O42(OH)6(Cl)} (M = Si for 1, Ge for 2), which are derived from {V18O42} by substitution of three {VO5} square pyramids with three {Si2O5(OH)2/Ge2O5(OH)2} units. It represents the first example of cage-like polyoxovanadates (POVs) containing three (Si/Ge)2O5(OH)2 units. There are extensive hydrogen bonding interactions between POVs and organoamines in 1 and 2. Compound 1 presents a close-packed layer aggregate, while 2 exhibits the packing of six-membered rings with a 1-D channel. Magnetism measurements demonstrate the presence of strong antiferromagnetic interaction between VIV centers in 1. 相似文献
20.
Preparation of the Iminium Salts CF3? NX?CF2+MF6? (X = CH3, F and M = As, Sb) and CF3? NCl?CF2+ AsF6? The preparation of the iminiumsalts CF3? NX?CF2+ MF6? (X = CH3, F and M = As, Sb) and CF3? NCl?CF2+ AsF6? is reported. The salts were characterized by NMR and infrared spectroscopy. CF3? NCH3?CF2+MF6? decompose into MF5 and (CF3)2NCH3. 相似文献