共查询到19条相似文献,搜索用时 46 毫秒
1.
提出一套适用于在海量光谱中快速发现激变变星的方法。针对SDSS发布的DR8数据,尝试流型学习方法在海量光谱数据挖掘中的应用。首先使用非线性局部线性嵌入方法(LLE)对海量光谱数据进行降维,然后使用人工神经网络对低维数据进行分类,最后对较少数量的候选体进行人工证认。实验共发现了6个新的激变变星候选体,并与传统的PCA方法进行了比较,验证了LLE方法在天文数据挖掘中的可行性。 相似文献
2.
提出一种适用于在郭守敬望远镜海量光谱中自动、快速筛选激变变星的方法。利用已证认的激变变星光谱作为模板,通过随机森林分类训练,得到一个分类模型,该模型给出了各个波长对应流量的重要性排序,可根据该排序进行降维并用于激变变星判别,结果作为反馈进一步丰富模板库。实验中共发现了16个新的激变变星候选体,表明了该方法的可行性。 相似文献
3.
LAMOST-DR1是郭守敬望远镜正式巡天发布的首批数据,其数量超过目前世界上所有已知恒星巡天项目的光谱总数。这为进一步扩大特殊和稀少天体如激变变星的数量提供了样本,同时也对天文数据处理方法和技术提出了更高的要求。针对LAMOST的数据特点,提出一种能够在海量天体光谱中自动、快速发现激变变星的方法。该方法使用拉普拉斯特征映射对天体光谱进行降维和重构。结果表明不同类别的天体光谱在拉普拉斯空间中能够得到较明显的区分。在使用粒子群算法对神经网络的参数进行优化后,对LAMOST-DR1的全部数据进行了自动识别。实验共发现了7个激变变星,经过证认,其中2个是矮新星,2个是类新星,1个是高度极化的武仙座AM型。这些光谱,补充了现有的激变变星光谱库。本文验证了拉普拉斯特征映射对天体光谱进行特征提取的有效性,为高维光谱进行降维提供了另一途径。在郭守敬望远镜正式发布的数据中寻找激变变星的首次尝试,实验结果表明该自动化的方法鲁棒性好,速度快,准确率高。该方法也可用于其他大型巡天望远镜的海量光谱处理。 相似文献
4.
激变变星是一类特殊而且数量稀少的双星系统,其主星是一颗白矮星, 伴星通常是一颗充满洛希瓣的光谱型为G,K或M型的晚型星或矮星。激变变星是一类爆发型的恒星,对于研究密近双星的演化具有积极的意义。激变变星按照爆发特征和光变特征可以分为很多亚型,如新星、再发新星、矮新星、类新星和磁激变变星。同时激变变星又是一类周期型的变星,这些因素都导致其可见光光谱非常复杂。目前对于激变变星的参数测量,主要通过后续观测来测量其轨道周期、主星和伴星之间的距离等。由于在吸积的过程中,物质在白矮星的表面累积,无法直接测量主星的物理参数,而且激变变星本身是一种暗弱的天体,实测光谱数量较少,因此极大限制了对激变变星物理参数的系统研究。目前唯一能够生成激变变星理论光谱的软件是基于光致电离模型的CLOUDY,但CLOUDY存在采样点过于稀少以及参数太多等问题,不能作为理想的理论光谱模板。法国ELODIE高分辨率的光谱可以作为M型恒星光谱参数测量的理论模板。前期工作中,通过机器学习等方法在美国斯隆巡天和中国郭守敬望远镜巡天数据中发现了一批激变变星。通过人工筛选,选择了伴星是M型的407条实测光谱,这些光谱大部分是宁静期的矮新星,光谱的主要特征是巴尔末线系和氦的发射线。再通过与高分辨率的ELODIE光谱交叉,利用SDSS-casjob数据库中的ELODIE参数,对激变变星的红端部分进行模板匹配,系统测量了其伴星的物理参数。为了降低计算量,对高维的光谱分别通过主分量分析和局部线性嵌入两种方法进行了特征提取和降维。实验结果表明LLE方法在邻域大小15,维度59时达到最高贡献率94.91%。根据PCA和LLE的交集,最终光谱的维度确定为59。实验中发现激变变星的伴星中M2型数量极少,具体原因需要更多的样本来解释。因为实验中激变变星光谱中,只有部分有明显的分子带特征,因此那些在爆发下降阶段或者光谱被吸积盘特征控制的激变变星没有进行参数测量。该实验弥补了激变变星光谱物理参数测量的空白。 相似文献
5.
美国斯隆数字巡天望远镜已经发布了第9期数据。这些海量的天文光谱数据除了可以用来进行大样本的研究,如探寻银河系的结构和进行多波段证认外,还蕴藏着稀少和特殊的天体,其中就包括矮新星。矮新星是激变变星中所占比例最高的一个亚型,发现更多的矮新星样本对于研究密近双星的演化和参数有积极的意义。目前针对激变变星这类稀少天体的发现主要使用测光粗筛选结合后期观测证认的方法,不但准确率低,而且需要耗费较多的人工处理时间,无法满足在海量光谱数据中快速发现矮新星候选体的需要。本文提出一种适用于在海量光谱中自动、快速发现矮新星的方法。该方法针对SDSS的DR9数据,先使用支持向量机约束主分量分析进行降维,确定特征空间的维数,然后再使用训练后得到的最优分类器对海量光谱进行自动识别,寻找矮新星候选体。实验共发现了276个矮新星,其中6个是未被收录的新的源,表明了该方法的有效性,为在海量光谱中快速发现稀少和特殊天体提供了有效途径。实验中发现的新结果补充了现有的矮新星模板光谱库,可以构造更准确的特征空间。本方法也可用于在其他的巡天望远镜如郭守敬望远镜的海量光谱中进行特殊天体的自动搜索。 相似文献
6.
提出了一种对恒星光谱识别的新方法。 根据恒星光谱数据的特性,我们以支持向量机为核心技术构建光谱识别器。 由于恒星光谱数据通常含有较高的噪声,如果直接进行分类,识别率往往较低。 因此作者首先采用小波分析的方法对原始光谱数据进行降噪预处理,提取光谱的特征,然后馈送到支持向量机完成对光谱数据的最终识别。 利用实际光谱数据(Jacoby, 1984)对所提出的技术进行检测,实验结果表明使用这种小波分析结合支持向量机的技术的识别效果要优于使用支持向量机结合主分量分析降维技术的识别方法。 另外,作者还比较了支持向量机与传统甄别分析的分类性能,对实际及合成光谱进行实验的结果显示了支持向量机的识别正确率不但优于常见的5种甄别分析方法的识别率,而且有较强的泛化能力。 相似文献
7.
变星对人类研究宇宙的起源与发展具有重要意义,对于变星研究的困难首先源于对变星的筛选和识别,即如何从海量恒星光谱数据中有效识别变星光谱。传统的异常数据定义试图通过不同的方式寻找异常数据与一般模式之间的偏差,进而予以定量分析和筛选。然而,这种方法的时间复杂度过大,且结果存在不可理解和无法解释的问题。文章利用熵可以反映系统有序程度与稳定程度的特性,引入信息熵作为衡量数据集一般模式的标准,提出了基于信息熵的变星光谱快速识别方法。该方法显著降低了算法的时间复杂度,有效地消除了人为主观因素对识别结果的影响。采用国家天文台提供的Sloan数字巡天数据实验验证了该方法的可行性和有效性。 相似文献
8.
高光谱成像的柑橘病虫害叶片识别方法 总被引:1,自引:0,他引:1
WU Ye-lan CHEN Yi-yu LIAN Xiao-qin LIAO Yu GAO Chao GUAN Hui-ning YU Chong-chong 《光谱学与光谱分析》2021,41(12):3837-3843
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。 相似文献
9.
随着人口的增长和社会的迅速发展,水资源短缺和水污染问题日益严重。水质分类作为水质污染评估工作中的一项重要环节,其意义和作用也更加突出。基于太赫兹衰减全反射(THz-ATR)光谱和模式识别技术,提出了一种水质分析模型。利用太赫兹时域光谱系统和衰减全反射模块测量了纯净水、自来水、河水、海水A和海水B五种水样的太赫兹衰减全反射光谱,通过光学参数提取模型获得0.2~1.0 THz频率范围内五种水样的折射率、吸收系数、介电常数实部和介电常数虚部。利用主成分分析(PCA)对折射率进行降维和特征提取,分别作出样品在第一、二主成分上的二维得分图和前三个主成分上的三维得分图,结果显示,基于折射率的主成分得分图可以明显的区分不同的水样。为了进一步对不同水样进行准确分类,将降维之后的数据输入到支持向量机(SVM)中构建水样分类模型,每种水样随机选取其中的五分之三作为训练集,剩余的数据作为测试集,同时引入网格搜索(GridSearch)、遗传算法(GA)和粒子群(PSO)三种优化算法对支持向量机参数进行优化。结果显示,基于网格搜索算法的支持向量机最优参数c和g分别为1.414 2和2.0,准确率为99.0%;基于遗传算法的支持向量机最优参数c和g分别为1.675 4和5.966 5,准确率为99.5%;基于粒子群算法的支持向量机最优参数c和g分别为3.154 9和12.589,准确率为100%。可以看出,使用不同的优化算法得到的最优参数不同,所构建的支持向量机分类模型都可实现正确的分类,且分类准确率均高达99.0%以上。研究结果表明,利用粒子群优化算法基于折射率构建的PCA-SVM分类模型效果最优,可以准确识别不同水样,为水质分类奠定了基础。 相似文献
10.
以淮南矿区谢桥矿和潘二矿的煤和岩石样本为研究对象,通过地物光谱仪采集样本反射率光谱曲线,同时检测样本氧化物含量、水分、灰分及挥发分含量,将样本的反射率光谱曲线和样本成分含量分别作为自变量,样本类别“煤”和“岩石”两种矿物类型作为因变量,建立煤和岩石识别模型对煤和岩石进行二分类。该研究主要采用三种模型,分别为主成分分析结合支持向量机(PCA-SVM)、主成分分析结合BP神经网络(PCA-BP)模型和核主成分分析结合支持向量机(KPCA-SVM)模型。结果表明,基于可见光近红外光谱的三个模型中,核主成分分析结合支持向量机模型的识别精度最高,建模平均精度为95.5%,验证平均精度约为90.56%;基于样本成分的三个模型中,核主成分分析结合支持向量机模型的识别精度最高,建模平均精度为98.5%,验证平均精度约为95%。 相似文献
11.
《中国科学:物理学 力学 天文学(英文版)》2010,(10)
This paper presents a novel spectroscopic method for searching for supernova candidates from massive galaxy spectra,which is expected to be applied to the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST).This method includes mainly five steps.The first step is spectral preprocessing,including removing spectral noise using wavelet transform,spectral de-redshift,etc.The second step is decomposition of galactic spectra;we can get the galaxy component and supernova component and calculate the Supernova Statistical Characterization Vector (SNSCV) of each galaxy spectrum.The third step is to decrease samples in all the galaxy spectral datasets according to SNSCV of each spectrum,and to use the LOF (Local Outlier Factor)-based outlier detection algorithm to obtain the preliminary selected spectral data.The fourth step is template matching by cross-correlation,according to the matched results we get the secondary selected spectral data.Finally,we choose the final supernova candidates manually through checking the spectral features characteristic of a supernova.By the spectroscopic method proposed in this paper,thirty-six supernova candidates have been detected in a dataset including 294843 galaxy spectra from the Sloan Digital Sky Survey Data Release 7.Nine of these objects are detected first and the other twenty-seven have been reported in other publications (fifteen of which are detected and reported first by us).The twenty-four new super-nova candidates include twenty Ia type supernova candidates,three Ic type supernova candidates and one II type supernova candidate. 相似文献
12.
13.
提出一套对海量光谱中类星体的红移测的方法。类星体具有本身的宽发射线的特征,而以往光谱处理方法中,对于宽的发射线的识别存在不足之处。由于类星体的红移一般比较大,谱线移动的范围比较大,不易进行判定。所以本文针对类星体最重要的特征,利用低频点集方法,提取光谱中宽的发射线并与已知线表进行匹配,来获得类星体的红移并能够对类星体进行初步的识别。为提高谱线识别可靠性,文章还提出一种估计局部噪声的方法。该文的方法不依赖与光谱的流量定标,可以应用于无流量定标时的光谱,例如正在调试阶段的LAMOST光谱数据。 相似文献
14.
15.
恒星光谱一般具有明显的吸收线或者吸收带特征,而具有发射线的恒星光谱对应着特殊类型的恒星,如激变变星、Herbig Ae/Be等。对这些光谱的后续研究有着重要的意义。本文提出了一种能够自动识别发射线恒星光谱的方法。该方法首先对光谱进行连续谱归一化,然后通过比较谱线对应的流量及其邻域流量的均值和标准差,来判断是否存在发射线。对SDSS DR8大样本数据的实验表明,该方法能够完整、准确地识别发射线恒星。而且,由于该方法不涉及复杂的变换和运算,因而识别速度非常快,可用于诸如LAMOST和SDSS这样大型光谱巡天项目中发现发射线恒星光谱。 相似文献
16.
The inverse scattering method is applied to the classical Grassman-valued massive Thirring model. In the framework of the method the existence of an infinity of both local and non-local conservation laws is established. It is shown that there are no simple solitons in the model. 相似文献
17.
随着移动通信和互联网技术的不断发展,网络直播逐渐成为了新媒体环境下人们青睐的在线娱乐和信息传播方式.目前广泛应用于课堂教学、真人秀、电竞赛事、品牌营销等方面.数百万主播与数亿计观众的活跃加入和互动,产生了丰富的在线人群行为活动数据,为开展大规模人群行为动力学、平台内容推荐与检测、在线社群演化等研究提供了丰富的实验场景.本文通过梳理国内外网络直播平台数据挖掘与行为分析的相关研究文献,分析了直播平台负载水平、观众行为、主播行为以及社群网络的特征和变化规律,并对直播平台中大规模人群行为表现出的时空规律和重尾效应进行了总结.直播平台中各种社群网络的形成和演化机制、内容推荐与检测等是未来网络直播领域研究的发展趋势. 相似文献
18.