首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of [Cp∗Ir(ppy)Cl] (Cp∗ = η5-C5Me5, ppyH = 2-(2-pyridyl)phenyl) with Ag(OTf) (OTf− = triflate) in MeOH and MeCN gave the solvento complexes [Cp∗Ir(ppy)(solv)][OTf] (solv = MeOH (1) and MeCN (2)). Complex 1 is capable of catalyzing oxidation and azirdination of styrene with PhIO and PhINTs (Ts = tosyl), respectively. Treatment of 2 with a stoichiometric amount of PhINTs resulted in the insertion of the NTs group into the Ir-C(ppy) bond and formation of [Cp∗Ir(η2-ppy-NTs)(MeCN)][OTf] (3). Treatment of 1 with R2E2 afforded [Cp∗Ir(ppy)(η1-R2E2)][OTf] (E = S (4), Se (5), Te (6)). Reactions of 4 and 5 with Ag(OTf) resulted in cleavage of the E-E bond and insertion of an ER group into the Ir-C(ppy) bond. The crystal structures of complexes 2-6 and [Cp∗Ir(η2-ppy-S-p-tol)(H2O)][OTf]2 have been determined.  相似文献   

2.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

3.
A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of C6F5BrF2 or 4-CF3C6H4BrF2 with aryl group transfer reagents Ar′SiF3 (Ar′ = C6F5, 4-FC6H4, C6H5) or perfluoroorganyl group transfer reagents RF′BF2 (RF = C6F5, trans-CF3CFCF, C3F7C≡C) preferentially in weakly coordinating solvents (CCl3F, CCl2FCClF2, CH2Cl2, CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB)). The presence of the base MeCN and the influence of the adducts RF′BF2·NCMe (RF = C6F5, CF3C≡C) on reactions aside to bromonium salt formation are discussed. Reactions of C6F5BrF2 with AlkF′BF2 in PFP gave mainly C6F5Br and AlkF′F (AlkF′ = C6F13, C6F13CH2CH2), presumably, deriving from the unstable salts [C6F5(AlkF′)Br]Y (Y = [AlkF′BF3]). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I-and the electrophile H+. [4-CF3C6H4(C6F5)Br][BF4] showed the conversion into 4-CF3C6H4Br and C6F5I when reacted with [Bu4N]I in MeCN. Perfluoroalkynylbromonium salts [CnF2n+1C≡C(RF)Br][BF4] slowly added HF when dissolved in aHF and formed [Z-CnF2n+1CFCH(RF)Br][BF4].  相似文献   

4.
Treatment of [Ir(ppy)2(μ-Cl)]2 and [Ir(ppy)2(dtbpy)][OTf] (ppy = 2-(2′-pyridyl)phenyl; dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine; OTf = triflate) with pyridinium tribromide in the presence of Fe powder led to isolation of [Ir(4-Br-ppy)(μ-Br)]2 (1) and [Ir(4-Br-ppy)2(dtbpy)][OTf] (2), respectively. Pd-catalyzed cross-coupling of 2 with RB(OH)2 afforded [Ir(4-R-ppy)2(dtbpy)][OTf] (R = 4′-FC6H4 (3)), 4′-PhC6H4 (4), 2′-thienyl (5), 4′-C6H4CH2OH (6). Treatment of 4 with B2(pin)2 (pin = pinacolate) afforded [Ir{4-(pin)B-ppy}2(dtbpy)][OTf] (7). The alkynyl complexes [Ir(4-PhCC-ppy)2(dtbpy)][OTf] (8) and [Ir{4-Me2(OH)CC-ppy}(4-Br-ppy)(dtbpy)][OTf] (9) were prepared by cross-coupling of 2 with PhCCSnMe3 and Me2C(OH)CCH, respectively. Ethynylation of [Ir(fppy)2(dtbpy)][OTf] (fppy = 5-formyl-2-(2′-pyridyl)phenyl) with Ohira’s reagent MeCOC(N2)P(O)(OEt)2 afforded [Ir{5-HCC-ppy}2(dtbpy)][OTf] (10). The solid-state structures of 2, 5, 7, and 10 have been determined.  相似文献   

5.
Halide abstraction from [Pd(μ-Cl)(Fmes)(NCMe)]2 (Fmes = 2,4,6-tris(trifluoromethyl)phenyl or nonafluoromesityl) with TlBF4 in CH2Cl2/MeCN gives [Pd(Fmes)(NCMe)3]BF4, which reacts with monodentate ligands to give the monosubstituted products trans-[Pd(Fmes)L(NCMe)2]BF4 (L = PPh3, P(o-Tol)3, 3,5-lut, 2,4-lut, 2,6-lut; lut = dimethylpyridine), the disubstituted products trans-[Pd(Fmes)(NCMe)(PPh3)2]BF4, cis-[Pd(Fmes)(3,5-lut)2(NCMe)]BF4, or the trisubstituted products [Pd(Fmes)L3]BF4 (L = CNtBu, PHPh2, 3,5-lut, 2,4-lut). Similar reactions using bidentate chelating ligands give [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda, dppe, OPPhPy2-N,N′, (OH)(CH3)CPy2-N,N′). The complexes trans-[Pd(Fmes)L2(NCMe)]BF4 (L = PPh3, tht) (tht = tetrahydrothiophene) and [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda) were obtained by halide extraction with TlBF4 in CH2Cl2/MeCN from the corresponding neutral halogeno complexes trans-[Pd(Fmes)ClL2] or [Pd(Fmes)Cl(L-L)]. The aqua complex trans-[Pd(Fmes)(OH2)(tht)2]BF4 was isolated from the corresponding acetonitrile complex. Overall, the experimental results on these substitution reactions involving bulky ligands suggest that thermodynamic and kinetic steric effects can prevail affording products or intermediates different from those expected on purely electronic considerations. Thus,water, whether added on purpose or adventitious in the solvent, frequently replaces in part other better donor ligands, suggesting that the smaller congestion with water compensates for the smaller M-OH2 bond energy.  相似文献   

6.
The SPh functionalized vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(SPh)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me, 2a; R = Me, R′ = Me, 2b; R = 4-C6H4OMe, R′ = Me, 2c; R = Xyl, R′ = CH2OH, 2d; R = Me, R′ = CH2OH, 2e; Xyl = 2,6-Me2C6H3] are generated in high yields by treatment of the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(H)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (1a-e) with NaH in the presence of PhSSPh. Likewise, the diruthenium complex [Ru2{μ-η13-Cγ(Me)Cβ(SPh)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2f) was obtained from the corresponding vinyliminium complex [Ru2{μ-η13-Cγ(Me)Cβ(H)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (1f). The synthesis of 2c is accompanied by the formation, in comparable amounts, of the aminocarbyne complex [Fe2{μ-CN(Me)(4-C6H4OMe)}(SPh)(μ-CO)(CO)(Cp)2] (3).The molecular structures of 2d, 2e and 3 have been determined by X-ray diffraction studies.  相似文献   

7.
The treatment of the complex [Ir(η2-C2H4)2(L)][PF6] (L = κ3-N,N,N-(S,S)-iPr-pybox) with acetic acid (1:1 molar ratio) at −10 °C affords the complex [Ir(C2H5)(κ2-O,O-O2CCH3)(L)][PF6] (1). The dinuclear iridium(III) complex [Ir2(μ-Cl)2(C2H5)2(L)2][PF6]2 (2) is stereoselectively obtained by spontaneous intramolecular insertion of ethylene into the iridium-hydride bond of the mononuclear complex [IrClH(η2-C2H4)(L)][PF6]. The single bridging chloride dinuclear derivative [Ir2(μ-Cl)(C2H5)2Cl2(L)2][PF6] (3) is prepared by reaction of 2 with one equivalent of NaCl. The intramolecular insertion reaction of methyl and ethyl propiolate into the Ir-H bond of the complex [IrClH(MeCN)(L)][PF6] gives stereoselectively the dinuclear complexes [Ir2(μ-Cl)2(HCCHCO2R)2(L)2][PF6]2 (R = Me (4), Et (5)). The reaction of the complexes 4, 5 with one equivalent of NaCl or with an excess of sodium acetate yields the dinuclear [Ir2(μ-Cl)(HCCHCO2R)2Cl2(L)2][PF6] (R = Me (6), Et (7)) or the mononuclear [IrCl(HCCHCO2Et)(κ1-O-O2CMe)(L)] (8) complexes, respectively. The structure of the dinuclear complex 3 · CH2Cl2 has been determined by an X-ray monocrystal study.  相似文献   

8.
Reaction of the ligand C6H5N(H)NCMe(C5H4N) (a) with palladium(II) acetate in toluene gave the mononuclear cyclometallated complex [Pd{C6H4N(H)NCMe(C5H4N)}(AcO)] (1a). Reaction of 1a with sodium chloride gave the analogous chlorine compound [Pd{C6H4N(H)NCMe(C5H4N)}(Cl)] (3a) which could also be prepared by reaction of a with lithium tetrachloropalladate and sodium acetate in methanol for 48 h; whereas shorter reaction times afforded the non-cyclometallated complex [Pd{C6H5N(H)NCMe(C5H4N)}(Cl)2] (2a). Reaction of the ligand 2-ClC6H4N(H)NCMe(C5H4N) · HCl (b), with palladium(II) acetate, or with lithium tetrachloropalladate and sodium acetate, yielded the cyclometallated complex [Pd2-ClC6H3N(H)NCMe(C5H4N)(Cl)] (1b). Treatment of 3a and 1b with silver trifluoromethanesulphonate (triflate) and triphenylphosphine in acetone gave the mononuclear complexes [Pd{2-RC6HnN(H)NCMe(C5H4N)}(PPh3)][CF3SO3], (R = H, n = 4, 4a; R = Cl, n = 3, 2b) with the ligand as C,N,N′ terdentate and substitution of chlorine by triphenylphosphine. Reaction of 3a and 1b with silver triflate and the tertiary diphosphine Ph2P(CH2)4PPh2 (dppb) in a 2:1 molar ratio gave the dinuclear cyclometallated complexes [{Pd[2-RC6H3N(H)NCMe(C5H4N)]}2(μ-Ph2P(CH2)4PPh2)][CF3SO3]2 (R = H, 5a; R = Cl, 3b) with a μ2-diphosphine bridging ligand. Similarly, treatment of 3a and 1b with silver triflate and the tertiary triphosphines MeC(CH2PPh2)3 (tripod) and (Ph2PCH2CH2)2PPh (triphos), in 3:1 molar ratio, gave the novel trinuclear complexes [{Pd[C6H4N(H)NCMe(C5H4N)]}33-MeC(CH2Ph2)3}][CF3SO3]3 (6a) and [{Pd[2-ClC6H3N(H)NCMe(C5H4N)]}33-(PPh2CH2CH2)2PPh}][CF3SO3] 3 (4b) regioselectively, with the phosphine as a μ3-bridging ligand. When the reaction between 3a and triphos was carried out in 1:1 molar ratio the mononuclear complex [Pd{C6H4N(H)NCMe(C5H4N)}{(PPh2CH2CH2)2PPh-P,P,P}][ClO4] (7a) was obtained. The crystal structures of 2b, 3a and 4a have been determined by X-ray crystallography.  相似文献   

9.
Two mild and versatile catalytic routes give regioselective hydrogenation of the heterocyclic ring of quinoline derivatives avoiding the high pressures of hydrogen required in the conventional hydrogenation route. Hydrosilylation using H3SiPh and catalyzed by [Rh(nbd)(PPh3)2]PF6 at room temperature gives dihydroquinoline, a product not obtainable via direct hydrogenation. Hydrosilylation of the CN bond of PhCHNPh is also observed under these conditions while PhCHCHPh is unreactive. Initial in situ disproportionation of phenylsilane to H2SiPh2 and SiH4, catalyzed by the same catalyst, was required for substrate reduction, as SiH4 proved to be the active reductant. No N-silyl intermediates were ever observed, hydrolysis presumably occurring in situ. This disproportionation reaction is of potential use in gaining access to silane (SiH4), a material otherwise not readily available. In a separate approach, transfer hydrogenation from isopropanol using [Ir(cod)(NHC)PPh3]BF4 (NHC = 1-neopentyl-4-n-butyl triazole-5-ylidene) as catalyst exclusively produces the tetrahydro product.  相似文献   

10.
The Rh(III)-thiolate complex [TpRh(SPh)2(MeCN)] (2; Tp = hydrotris(3,5-dimethylpyrazolyl)borate) readily undergoes substitution of MeCN by XyNC (Xy = 2,6-dimethylphenyl) to give the isocyanide complex [TpRh(SPh)2(XyNC)] (3), whereas reaction of 2 with terminal alkynes results in the formation of the rhodathiacyclobutene complex [TpRh(SPh){η2-CHCR(SPh)}] (4; R = aryl, alkyl). Molecular structures of 3 and 4 (R = CH2Ph) have been determined by single crystal X-ray diffraction. Complex 2 as well as [TpRh(cyclooctene)(MeCN)] have been found to catalyze regioselective addition of benzenethiol to terminal alkynes RCCH at 50 °C to give R(PhS)CCH2 in moderate to high yields. The above products are selectively formed when R = CH2Ph and n-C6H13, while cis-RCHCHSPh and RC(SPh)2CH3 are also obtained as by-products when R = p-MeOC6H4. Catalytic cycle involving 2 and 4 is proposed based on the mechanistic studies using NMR measurement.  相似文献   

11.
Reactions of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me) and [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with 2-substituted-1,8-naphthyridine ligands, 2-(2-pyridyl)-1,8-naphthyridine (pyNp), 2-(2-thiazolyl)-1,8-naphthyridine (tzNp) and 2-(2-furyl)-1,8-naphthyridine (fuNp), lead to the formation of the mononuclear cationic complexes [(η6-C6H6)Ru(L)Cl]+ {L = pyNp (1); tzNp (2); fuNp (3)}, [(η6-p-iPrC6H4Me)Ru(L)Cl]+ {L = pyNp (4); tzNp (5); fuNp (6)}, [(η5-C5Me5)Rh(L)Cl]+ {L = pyNp (7); tzNp (8); fuNp (9)} and [(η5-C5Me5)Ir(L)Cl]+ {L = pyNp (10); tzNp (11); fuNp (12)}. All these complexes are isolated as chloro or hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV/Vis spectroscopy. The molecular structures of [1]Cl, [2]PF6, [4]PF6, [5]PF6 and [10]PF6 have been established by single crystal X-ray structure analysis.  相似文献   

12.
Treatment of N-tosyl aziridine with KPPh2 in THF produces Ph2PCH2CH2NTsK (Ts = p-CH3C6H4SO2). Reaction of Ph2PCH2CH2NTsK with [Rh22-Cl)2(NBD)2] (NBD = norbornadiene) and [Rh22-Cl)2(COD)2] (COD = 1,5-cyclooctadiene) produces [Rh(NBD)(Ph2PCH2CH2NTs)] and [Rh(COD)(Ph2PCH2CH2NTs)] (4), respectively. Reaction of Ph2PCH2CH2NTsK with [Ir22-Cl)2(COD)2] gives [Ir(COD)(Ph2PCH2CH2NTs)]. Complex 4 is catalytically active for polymerization of arylalkynes and for cyclotrimerization of HCCCOR (R = OEt, Me). The novel metallacycle [Rh(C(CO2Et)CHC(CO2Et)CH)(CH(CO2Et)CCCCO2Et)(Ph2PCH2CH2NHTs)2] was isolated from the reaction of 4 with ethyl propiolate. The metallacycle is catalytically active for cyclotrimerization of ethyl propiolate.  相似文献   

13.
The principle of C-S bond activation of acyclic vinlyl sulfide by platinum(0)-complex was applied to the C-Se bond fission of vinyl selenide. The substrate possessing Ph and ArSe (Ar = C6H4Cl-p) substituents at the β-carbon successfully reacted with Pt(0)-complex at 25 °C to produce the vinyl platinum in good yield and its structure was unambiguously determined by X-ray crystallographic analysis. When (Z)-(Me3Si)(ArSe)C(H)(SeAr) was employed as a reaction substrate, following β-Se elimination took place to liberate Me3SiCCH with the production of [trans-Pt(SeAr)2(PPh3)2]. The oxidative addition of C-Se bond of (E)-(Ph)(H)CC(H)(SeAr) to Pt(0) was also confirmed at 25 °C, while no C-S bond-breaking occurred when the corresponding vinyl sulfide was exposed to the same reaction conditions, demonstrating that the cleavage of C-Se bond was more facile than that of C-S bond.  相似文献   

14.
Bromonium salts [(RF)2Br]Y with perfluorinated groups RFC6F5, CF3CFCF, C2F5CFCF, and CF3C≡C were isolated from reactions of BrF3 with RFBF2 in weakly coordinating solvents (wcs) like CF3CH2CHF2 (PFP) or CF3CH2CF2CH3 (PFB) in 30-90% yields. C6F5BF2 formed independent of the stoichiometry only [(C6F5)2Br][BF4]. 1:2 reactions of BrF3 and silanes C6F5SiY3 (Y = F, Me) ended with different products - C6F5BrF2 or [(C6F5)2Br][SiF5] - as pure individuals, depending on Y and on the reaction temperature (Y = F). With C6F5SiF3 at ≥−30 °C [(C6F5)2Br][SiF5] resulted in 92% yield whereas the reaction with less Lewis acidic C6F5SiMe3 only led to C6F5BrF2 (58%). The interaction of K[C6F5BF3] with BrF3 or [BrF2][SbF6] in anhydrous HF gave [(C6F5)2Br][SbF6]. Attempts to obtain a bis(perfluoroalkyl)bromonium salt by reactions of C6F13BF2 with BrF3 or of K[C6F13BF3] with [BrF2][SbF6] failed. The 3:2 reactions of BrF3 with (C6F5)3B in CH2Cl2 gave [(C6F5)2Br][(C6F5)nBF4−n] salts (n = 0-3). The mixture of anions could be converted to pure [BF4] salts by treatment with BF3·base.  相似文献   

15.
Single crystals of [Cu(men)2(BF4)2] (men = N-methyl-1,2-diaminoethane) (1) were isolated from an aqueous-ethanolic system Cu2+-men-BF4. The crystal structure of 1 consists of [Cu(men)2(BF4)2] molecules. Copper ion exhibits usual distorted octahedral coordination; there are two coordinated men ligands in the equatorial plane with Cu-N bonds of 2.0451(12) and 2.0035(12) Å, while the axial positions are occupied by fluorine atoms from BF4 anions with Cu-F bond of 2.5091(11) Å. The packing of the [Cu(men)2(BF4)2] molecules is governed by N-H?F type hydrogen bonds. The measured ESR spectrum corroborated the presence of Jahn-Teller anisotropy of Cu(II) with g|| = 2.20 and g = 2.06. The magnetic studies in the temperature range 300-2 K reveal that 1 follows the Curie-Weiss law with parameters = 2.1612(1) and θ = −0.233(1) K suggesting the presence of weak antiferomagnetic interactions.  相似文献   

16.
The synthesis and characterization of a previously unknown, rare organometallic-phosphate complex, {[Bu4N][(1,5-COD)Ir · HPO4]}n (1), is described. Characterization of 1 was accomplished by elemental analysis, electrospray mass spectrometry (ES-MS), and 1H and 13C NMR which established the symmetry of the product as at least C2 or Cs. The ES-MS reveals an interesting, Ir(I) to Ir(III) oxidative process with intense peaks displaying the 191Ir/193Ir isotopic distribution patterns expected for the fragments [(1,5-COD)IrIII(HPO4)2], [(C8H11)2(IrIII)2(PO4)(HPO4)(H2O)], and [(C8H11)2(IrIII)2(PO4)(HPO4)(H2O)2]. These fragments, in turn, provide evidence for a structure with two HPO42− groups attached to a single Ir, for example ring structures (of at least such C2 or Cs symmetry) such as {[Bu4N][(1,5-COD)Ir · HPO4]}2. Complex 1 is significant since it is known to be the preferred, compositionally precise precursor to the prototype example of a recently discovered class of novel, HPO42− and Bu4N+ stabilized nanoclusters, (Bu4N)2n2n+[Ir(0)n · (HPO4)n]2n. Such nanoclusters are being extended, via their analogous hydrogenphosphate-organometallic precursors (1,5-COD)M+ or 2+/HPO42− (M=Rh(I), Ru(II), Pt(II)) to their corresponding, catalytically active [M(0)n · (HPO4)n]2n nanoclusters.  相似文献   

17.
Based on the versatile ligand 1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (3,4′-Hbpt) (1), a series of coordination compounds [Ni(3,4′-Hbpt)(ip)] (2), [Ni(3,4′-Hbpt)2(tp)(H2O)2] (3), [Ni2(3,4′-Hbpt)(5-NO2-ip)2(H2O)4] (4) and [Ni(3,4′-Hbpt)(pm)0.5(H2O)3]·2H2O (5) have been hydrothermally constructed through R-phenyldicarboxyl (R = H, NO2 and COOH) intervention effect (ip = isophthalic anion, tp = terephthalic anion, 5-NO2-ip = 5-NO2-isophthalic anion, pm = pyromellitic anion). Structural analysis reveals that 3,4′-Hbpt adopts μ-Npy, Npy coordination modes in two typical conformations in these target coordination compounds. In cooperation with the auxiliary ligands benzenedicarboxylate connectors, a variety of Ni(II) coordination networks such as 2-D layer with (4, 4) topology (2) 1-D chain (3), honeycomb (4) and 2-D helical chains (5) have been assembled. Theoretical calculation based on density functional theory (DFT) for ligand (1) is also employed to explicate the stability of the different conformations. Moreover, thermal stability of these crystalline materials is explored by TG-DTG.  相似文献   

18.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

19.
Mixed-ligand OsCl(Tp)L(PPh3) complexes 1 [Tp = hydridotris(pyrazolyl)borate; L = P(OMe)3, P(OEt)3 and PPh(OEt)2] were prepared by allowing OsCl(Tp)(PPh3)2 to react with an excess of phosphite. Treatment of chlorocomplexes 1 with NaBH4 in ethanol afforded hydride OsH(Tp)L(PPh3) derivatives 2. Stable dihydrogen [Os(η2-H2)(Tp)L(PPh3)]BPh4 derivatives 3 were prepared by protonation of hydrides 2 with HBF4 · Et2O at −80 °C. The presence of the η2-H2 ligand is supported by short T1 min values and JHD measurements on the partially deuterated derivatives. Treatment of the hydride OsH(Tp)[P(OEt)3](PPh3) complex with the aryldiazonium salt [4-CH3C6H4N2]BF4 afforded aryldiazene [Os(4-CH3C6H4NNH)(Tp){P(OEt)3}(PPh3)]BPh4 derivative 4. Instead, aryldiazenido [Os(4-CH3C6H4N2)(Tp)[P(OEt)3](PPh3)](BF4)2 derivative 5 was obtained by reacting the hydride OsH(Tp)[P(OEt)3](PPh3) first with methyltriflate and then with aryldiazonium [4-CH3C6H4N2]BF4 salt. Spectroscopic characterisation (IR, 15N NMR) by the 15N-labelled derivative strongly supports the presence of a near-linear Os-NN-Ar aryldiazenido group. Imine [Os{η1-NHC(H)Ar}(Tp){P(OEt)3}(PPh3)]BPh4 complexes 6 and 7 (Ar = C6H5, 4-CH3C6H4) were also prepared by allowing the hydride OsH(Tp)[P(OEt)3](PPh3) to react first with methyltriflate and then with alkylazides.  相似文献   

20.
Reactions of a sulfido- and thiolato-bridged diiridium complex [(CpIr)2(μ-S)(μ-SCH2CH2CN)2] (Cp = η5-C5Me5) with [(CpMCl)2(μ-Cl)2] (M = Ir, Rh) afforded the sulfido- and thiolato-bridged trinuclear clusters [(CpM)(CpIr)23-S)(μ2-SCH2CH2CN)22-Cl)]Cl (4: M = Ir, 5: M = Rh). Upon treatment with XyNC (Xy = 2,6-Me2C6H3) in the presence of KPF6 at 60 °C, 4 was converted into a mixture of a mononuclear XyNC complex [CpIr(SCH2CH2CN)(CNXy)2][PF6] (6) and a dinuclear XyNC complex [{CpIr(CNXy)}2(μ-S)(μ-SCH2CH2CN)][PF6] (7). On the other hand, reactions of 4 and 5 with methyl propiolate in the presence of KPF6 at 60 °C resulted in the formation of a cyclic trimer of the alkyne 1,3,5-C6H3(COOMe)3 as the sole detectable organic product. The reactions proceeded catalytically with retention of the cluster cores of 4 and 5, whereby the activity of the former was much higher than that of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号