首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Addition of ethynylferrocene to nido-1,2-(CpRuH)2B3H7 (1) at ambient temperature leads to nido-1,2-(CpRu)2(1,5-μ-C{Fc}Me)B3H7 (2, 3) and closo-4-Fc-1,2-(CpRuH)2-4,6-C2B2H3 (4). Compounds 2 and 3 represent a pair of geometric isomers, nido-species in which the regiochemistry of the alkyne reduction conforms to the Markovnikoff rule. Compound 4 is an octahedral structure in which the inserted alkyne is on an open face of the closo cluster.  相似文献   

2.
The reactivity of a diruthenium tetrahydride complex towards three selected dihydroboranes was investigated. The use of [DurBH2] (Dur=2,3,5,6-Me4C6H) and [(Me3Si)2NBH2] led to the formation of bridging borylene complexes of the form [(Cp*RuH)2BR] (Cp*=C5Me5; 1 a : R=Dur; 1 b : R=N(SiMe3)2) through oxidative addition of the B−H bonds with concomitant hydrogen liberation. Employing the more electron-deficient dihydroborane [3,5-(CF3)2-C6H3BH2] led to the formation of an anionic complex bearing a tetraarylated chain of four boron atoms, namely Li(THF)4[(Cp*Ru)2B4H5(3,5-(CF3)2C6H3)4] ( 4 ), through an unusual, incomplete threefold dehydrocoupling process. A comparative theoretical investigation of the bonding in a simplified model of 4 and the analogous complex nido-[1,2(Cp*Ru)2(μ-H)B4H9] ( I ) indicates that there appear to be no classical σ-bonds between the boron atoms in complex I , whereas in the case of 4 the B4 chain better resembles a network of three B−B σ bonds, the central bond being significantly weaker than the other two.  相似文献   

3.
The reaction of gaseous HCl with either the disodium or dilithium compound of the [nido-2,4-(SiMe3)2-2,4-C2B4H4]2− dianion (I) in 1:1 stoichiometry in THF produced the monoprotonated species 1-Na(THF)2-2,4-(SiMe3)2-2,4-C2B4H5 (II) or 1-Li(THF)2-2,4-(SiMe3)2-2,4-C2B4H5 (III), in 81% and 80% yields, respectively. This method proved superior to that involving the direct reduction of the closo-C2B4 carborane by metal hydrides. II and III were characterized by elemental analysis, 1H, 11B and 13C NMR and IR spectra. Compound II was recrystallized from a mixture THF, hexane and TMEDA (1:2:1) to isolate colorless crystals of the mixed solvated species, 1-(THF)-1-(TMEDA)-1-Na-2,4-(SiMe3)2-2,4-C2B4H5 (IV), which were subsequently used for X-ray diffraction studies. The structure of IV showed that the capping metal occupied the apical position above the open C2B3 face of the carborane and that a hydrogen atom was bridging the two adjacent boron atoms on that face. The 11B and 13C NMR spectra calculated by GIAO (gauge independent atomic orbital) methods at the 6-311G** level on the B3LYP/6-31G* optimized geometries of IIII, and a number of related nido- and closo-carboranes, gave excellent agreement with experiment, even in compounds where electron correlation effects are known to be important.  相似文献   

4.
The reaction of nido‐[1,2‐(Cp*RuH)2B3H7] ( 1 a , Cp*=η5‐C5Me5) with [Mo(CO)3(CH3CN)3] under mild conditions yields the new metallaborane arachno‐[(Cp*RuCO)2B2H6] ( 2 ). Compound 2 catalyzes the cyclotrimerization of a variety of internal‐ and terminal alkynes to yield mixtures of 1,3,5‐ and 1,2,4‐substituted benzenes. The reactivities of nido‐ 1 a and arachno‐ 2 with alkynes demonstrates that a change in geometry from nido to arachno drives a change in the reaction from alkyne‐insertion to catalytic cyclotrimerization, respectively. Density functional calculations have been used to evaluate the reaction pathways of the cyclotrimerization of alkynes catalyzed by compound 2 . The reaction involves the formation of a ruthenacyclic intermediate and the subsequent alkyne‐insertion step is initiated by a [2+2] cycloaddition between this intermediate and an alkyne. The experimental and quantum‐chemical results also show that the stability of the metallacyclic intermediate is strongly dependent on the nature of the substituents that are present on the alkyne.  相似文献   

5.
Building upon our earlier results on the synthesis of electron‐precise transition‐metal–boron complexes, we continue to investigate the reactivity of pentaborane(9) and tetraborane(10) analogues of ruthenium and rhodium towards thiazolyl and oxazolyl ligands. Thus, mild thermolysis of nido‐[(Cp*RuH)2B3H7] ( 1 ) with 2‐mercaptobenzothiazole (2‐mbtz) and 2‐mercaptobenzoxazole (2‐mboz) led to the isolation of Cp*‐based (Cp*=η5‐C5Me5) borate complexes 5 a , b [Cp*RuBH3L] ( 5 a : L=C7H4NS2; 5 b : L=C7H4NOS)) and agostic complexes 7 a , b [Cp*RuBH2(L)2], ( 7 a : L=C7H4NS2; 7 b : L=C7H4NOS). In a similar fashion, a rhodium analogue of pentaborane(9), nido‐[(Cp*Rh)2B3H7] ( 2 ) yielded rhodaboratrane [Cp*RhBH(L)2], 10 (L=C7H4NS2). Interestingly, when the reaction was performed with an excess of 2‐mbtz, it led to the formation of the first structurally characterized N,S‐heterocyclic rhodium‐carbene complex [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 11 ) (L=C7H4NS2). Furthermore, to evaluate the scope of this new route, we extended this chemistry towards the diruthenium analogue of tetraborane(10), arachno‐[(Cp*RuCO)2B2H6] ( 3 ), in which the metal center possesses different ancillary ligands.  相似文献   

6.
[(η5-C5R5)Fe(PMe3)2H] (R = H, Me) can be made in good yields in a simple one-pot reaction between FeCl2, PMe3, C5R5H (R = H, Me) and Na/Hg in thf. Reaction of [(η5-C5H5)Fe(PMe3)2H] with pentaborane(9) gives the known metallaborane [(η5-C5H5)-nido-2-FeB5H10] (1) in improved yield as well as the new metallaboranes [(η-C5H5)-nido-2-FeB5H8{μ-5,6-Fe(η5-C5H5)(PMe3)(μ-6,7-H)}] (2), [(η-C5H5)(PMe3)-arachno-2-FeB3H8] (3), [(η5-C5H5)2-capped-nido-2,3-Fe2B4H8] (4), [(η5-C5H5)-nido-2-FeB4H7(PMe3)] (5) and [(η5-C5H5)-nido-2-FeB5H8(PMe3)] (6). Reaction of [(η5-C5Me5)Fe(PMe3)2H] with pentaborane(9) gives predominantly [(η5-C5Me5)-nido-2-FeB5H10] (7) and [(η5-C5Me5)(PMe3)-arachno-2-FeB3H8] (8). Reaction of [(η5-C5H5)Fe(PMe3)2H] with 2 equiv. of BH3 · thf gives low yields of ferrocene and compound 3. Compound 7 thermally isomerises to the apical isomer [(η5-C5H5)-nido-2-FeB5H10] (9) in low yield. Compounds 1 and 7 deprotonate cleanly in the presence of KH at the unique B-H-B bridge to give [(η5-C5H5)-nido-2-FeB5H9][K+] (10) and [(η5-C5Me5)-nido-2-FeB5H9][K+] (11) respectively, whilst 6 deprotonates more slowly at one of two equivalent B-H-B bridges to give the fluxional anion [(η5-C5H5)-nido-2-FeB5H7(PMe3)] (12).  相似文献   

7.
Building upon our earlier results on the chemistry of nido-1,2-[(Cp*RuH)2B3H7] (Cp*=ɳ5-C5Me5) (nido- 1 ) with different transition metal carbonyls, we continued to investigate the reactivity with group 7 metal carbonyls under photolytic condition. Photolysis of nido- 1 with [Mn2(CO)10] led to the isolation of a trimetallic [(Cp*Ru)2{Mn(CO)3}(μ-H)(μ-CO)3(μ3-BH)] ( 2 ) cluster with a triply bridging borylene moiety. Cluster 2 is a rare example of a tetrahedral cluster having hydrido(hydroborylene) moiety. In an attempt to synthesize the Re analogue of 2 , a similar reaction was carried out with [Re2(CO)10] that yielded the trimetallic [(Cp*Ru)2{Re(CO)3}(μ-H)(μ-CO)3(μ3-BH)] ( 3 ) cluster having a triply bridging borylene unit. Along with 3 , a trimetallic square pyramid cluster [(Cp*Ru)2{Re(CO)3}(μ-H)2(μ-CO)(μ3,ɳ2-B2H5)] ( 4 ), and heterotrimetallic hydride clusters [{Cp*Ru(CO)2}-{Re(CO)4}2(μ-H)] ( 5 ) and [{Cp*Ru(CO)}{Re(CO)4}2(μ-H)3] ( 6 ) were isolated. Cluster 4 is a unique example of a M2M′B2 cluster having diboron capped Ru2Re-triangle. The hydride clusters 5 and 6 have triangular RuRe2 frameworks with one and three μ-Hs respectively. All the clusters have been characterized by using mass spectrometry, 1H, 11B{1H}, 13C{1H} NMR and IR spectroscopies analyses and the structures of clusters 2 – 6 have been unambiguously established by XRD analyses. Furthermore, to understand the electronic, structural, and bonding features of the synthesized metal-rich clusters, DFT calculations have been performed.  相似文献   

8.
Reactions between [Ru(thf)(PPh3)2(η-C5H5)]+ and lithium acetylides have given further examples of substituted ethynylruthenium complexes that are useful precursors of allenylidene and cumulenylidene derivatives. From Li2C4, mono- and bi-nuclear ruthenium complexes were obtained: single-crystal X-ray studies have characterised two rotamers of {Ru(PPh3)2(η-C5H5)}2(μ-C4), which differ in the relative cis and trans orientations of the RuLn groups. Protonation of Ru(CCCCH)(PPh3)2(η-C5H5) afforded the butatrienylidene cation [Ru(C=C=C=CH2)(PPh3)2(η-C5H5)]+, which reacted readily with atmospheric moisture to give the acetylethynyl complex Ru{CCC(O)Me}(PPh3)2(η-C5H5), also fully characterised by an X-ray structural study.  相似文献   

9.
The previously unknown metallacarboranes (η-C5R5)Ru(η-9-Me2S-7,8-C2B9H10) (R=H or Me) and (η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10) were prepared and used in the synthesis of the first metallacarborane triple-decker complexes with a central cyclopentadienyl ligand, viz., [(η-C5R5)Ru(μ-η:η-C5Me5)Ru(η-9-Me2S-7,8-C2B9H10)]PF6 (R=H or Me), [(η-9-Me2S-7,8-C2B9H10)Ni(μ-η:η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10)]PF6, and [(η-C5H5)Ni(μ-η:η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10)]BF4. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1368–1373, July, 1999.  相似文献   

10.
Reaction of nido-1,2-(Cp*RuH)2B3H7, 1, and methyl acetylene monocarboxylate under kinetic control generates nido-1,2-(Cp*Ru)2(mu-C[[CO2Me]Me])B3H7 (a pair of geometric isomers, 3 and 5) and nido-1,2-(Cp*Ru)2(1,3-mu-C[[CH2CO2Me]H])B3H7, 4, which display the first examples of exo-cluster mu-alkylidene Ru-B bridges generated by hydrometalation of an alkyne on the cluster framework. Both 3 and 5, but not 4, rearrange into arachno-2,8-mu(C)-5-eta1(O)-Me[CO2Me]C-1,2-(Cp*Ru)2B3H7, 2, in which an unprecedented intramolecular coordination of the carbonyl oxygen atom of the alkyne substituent to a boron framework site opens the ruthenaborane skeleton. Compound 2, in turn, is an intermediate in the formation of the ruthenacarborane nido-1,2-(Cp*Ru)2-3-OH-4-OMe-5-Me-4,5-C2B2H5, 12, in which the carbonyl-oxygen double bond has been cleaved as its oxygen atom inserts into a B-H bond and the carbonyl carbon inserts into the metallaborane framework. In a parallel reaction pathway, nido-1,2-(Cp*Ru)2-5-CO2Me-4,5-C2B2H7, 6, nido-1,2-(Cp*Ru)2-4-B(OH)2-5-CO2Me-4,5-C2B2H6, 16, and nido-1,2-(Cp*Ru)2(mu-H)(mu-BH2)-3-(CH2)2CO2Me-CO2Me-4,5-C2B2H4 (a pair of geometric isomers, 7 and 14, which contain an unusual Ru-B borane bridge) are formed. On heating, 7 rearranges to yield nido-1,2-(Cp*Ru)2-3-(CH2)2CO2Me-4-BH2-5-CO2Me-4,5-C2B2H5, 13, whereas 14 converts to nido-1,2-(Cp*Ru)2-3-(CH2)2CO2Me-4-CO2Me-4,5-C2B2H6, 8. Under thermodynamic control, nido-1,2-(Cp*Ru)2-4,5-B[(CH2)2CO2Me]CO(MeO)[C(CH2)CO2Me]-4,5-C2B2H6, 11, is the major product accompanied by lesser amounts of 6 and 1,2-(Cp*Ru)2-4-OMe-5-Me-4,5-C2B2H6, 10. Compound 11 features a five-membered heterocycle containing a boron atom. The structure of 7, which is an intermediate in the formation of 11, provides the basis for an explanation of this complex condensation of three alkynes. A previously unrecognized role for an exo-cluster bridging borene generated from the metallaborane skeleton by addition of the alkyne is also a feature of this chemistry. Reinsertion or loss of this boron fragment accounts for much of the chemistry observed. NMR experiments reveal labile intermediates, and one has been sufficiently characterized to provide mechanistic insight on the early stages of the alkyne-metallaborane addition reaction. All isolated compounds have been spectroscopically characterized, and most have been structurally characterized in the solid state.  相似文献   

11.
Halogenation of 9-dimethylsulfonium-7,8-dicarba-nido-undecaborane [9-SMe2-7,8-C2B9H11] with N-chlorosuccinimide, bromine and iodine gave the expected corresponding halogen derivatives [9-SMe2-11-X-7,8-C2B9H10], where X = Cl (1), Br (2), I (3). In the bromination reaction, [9-SMe2-6-Br-7,8-C2B9H10] (4) was isolated as a minor product being the first example of substitution at a “lower” belt of the 7,8-dicarba-nido-undecaborate cage. The use of excess of bromine resulted in dibromo derivative [9-SMe2-6,11-Br2-7,8-C2B9H9] (5). Structures of the compounds prepared were determined using 11B-11B COSY NMR spectroscopy (for all halogen derivatives) and single crystal X-ray diffraction (for compounds 2, 3, and 5).  相似文献   

12.
Three Pd(II) complexes [Pd2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] · 0.25CH2Cl2 (1), [Pd{7,8-(PPh2)2-7,8-C2B9H10}2] · 4CHCl3 (2) and [PdCl2(1,2-(PPh2)2-1,2-C2B10H10)] (3) have been synthesized by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with PdCl2 in acetonitrile, cyanophenyl and dichloromethane, respectively. A fourth complex, [PdI2(1,2-(PPh2)2-1,2-C2B10H10)] (4), was obtained by a ligand exchange reaction through the substitution of the Cl of complex 3 with I. All four complexes have been characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal X-ray determination showed that the carborane cage, nido for 1, 2 and closo for 3, 4, was coordinated bidentately to the Pd atom through the two P atoms, and the geometry at the Pd atom was square-planar in all the complexes.  相似文献   

13.
The reaction of the alkyne HCCC(O)OMe with 7 sep 1,2-(Cp*RuH)2B3H7 leads to hydroboration plus hydroruthenation to produce nido-1,3-mu-Me{C(O)OMe}C-1,2-(Cp*Ru)2B3H7, a compound with an exocluster ruthenium-boron mu-alkylidene that exists in two isomeric forms. Both isomers undergo rearrangement with intramolecular chelation of the carbonyl oxygen at a boron site, thereby opening the cluster and generating arachno-2,3,-mu(C)-5-eta1(O)-Me{C(O)OMe}C-1,2-(Cp*Ru)2B3H7. Further heating leads to deoxygenation of the carbonyl fragment by a boron center concurrent with insertion of the carbon atom into the metallaborane cage to give nido-1,2-(Cp*RuH)2-3-HOB-4-MeC-5-MeOC-BH3.  相似文献   

14.
The reaction of Li[closo-1-Me-1,2-C2B10H10] with cyclohexene oxide produced closo-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (1) in 86% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol gave the corresponding cage-opened potassium salt of the carborane anion, [nido-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B9H10] (2) in 82% yield. Deprotonation of (2) with two equivalents of n-butyllithium in THF at −78 °C, followed by its further reaction with anhydrous MCl4 · 2THF (M = Ti, Zr) produced the corresponding d0-half-sandwich metallacarboranes, closo-1-M(Cl)-2-Me-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (3 M = Zr; 4 M = Ti), in 59% and 51% yields, respectively. Reaction of Li[closo-1,2-C2B10H11] with Merrifield’s peptide resin (1%) in refluxing THF gave the ortho-carborane-functionalized polymer (5) in 88% yield. The corresponding closo-1-polystyryl-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (6) was produced in 94% yield by refluxing a mixture of the lithium salt of (5) and cyclohexene oxide in THF for 2 days. Compound (6) was decapitated, deprotonated and then reacted with ZrCl4 · 2THF to produce a polymer-supported d0-half-sandwich metallacarborane closo-1-Zr(Cl)-2-polystyryl-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (7) in 41% yield. Compounds (3) and (7), in the presence of MMAO-7 (13% ISOPAR-E), were found to catalyze the polymerization of ethylene and vinyl chloride in toluene to give high molecular weight PE (9.4 × 103 (Mw/Mn = 1.8)) and PVC (2.1 × 103 (Mw/Mn = 1.6)), respectively.  相似文献   

15.
The nature of the protonation reaction of (
o(CO)3 (M = Mo, W; R = Me, Ph, p-MeC6H4) (2) (obtained from (CO)3CpMCH2CCR (1) and Co2(CO)8) to give (CO)3 Cp(CO)2 (3) was further investigated by a crossover experiment. Thus, reaction of an equimolar mixture of 2b (M = W, Cp = η5-C5H5, R = Ph) and 2e (M = W, Cp = η5-C5H4Me; R = p-MeC6H4) with CF3COOH affords only 3b (same M, Cp, and R as 2b) and 3e (same M, Cp, and R as 2e) to show an intramolecular nature of this transformation. Reaction of (CO)3CpWCH2CCPh (1b) with Co4(CO)12 was also examined and found to yield 2b exclusively. Treatment of 1 with Cp2Mo2(CO)4 at 0–5°C provides thermally sensitive compounds, possibly (CO)2Cp
oCp(CO)2 (5), which decompose at room temperature to give Cp2Mo2(CO)6 as the only isolated product.  相似文献   

16.
H ? C Bond Cleavage in Ferrocene by Organylruthenium Complexes Cp*(Me3P)2RuCH2CMe3 ( 1 ) reacts at 85°C with ferrocene ( 2 ) by cleavage of one H? C bond in 2 to give CpFe[η5-C5H4Ru(PMe3)2Cp*] ( 3 ) (Cp = η5-C5H5; Cp* = η5-C5Me5) and neopentane. The ruthenium atom in 3 has a distorted tetrahedral geometry, the planar Cp ligands in the ferrocenyl fragment are eclipsed. Solutions of 3 in [D6]benzene or [D8]THF exhibit H? D exchange of the ferrocenyl protons. In the [D8]THF molecule only the α-deuterium atoms are exchanged. Reaction pathways for this exchange are discussed.  相似文献   

17.
The reaction of the hypho-[6,7-C2B6H13] anion (1) with nickelocene and an excess of ‘proton sponge’ (1,8-bis-(dimethylamino-naphthalene)) in boiling acetonitrile leads to the formation of a pair of isomeric trimetallic nickel-boron clusters, [6,7,8-(CpNi)3-1-CB5H6] (2) and [6,7,8-(CpNi)3-2-CB5H6] (3), in a combined yield of 55%. Isomer (2) had been previously prepared from nido-2-CB5H9 but in much lower yield. Isomer (3) is without precedent and has been characterized using multi-nuclear NMR spectroscopy and mass spectrometry. Isomer (3) undergoes conversion to (2) via heating in boiling toluene. In addition to this isomeric pair, an interesting nido dimetallacarborane of constitution [6,6′-(CpNi)2-7,7′-C2B6H8] (4) has been isolated from the same reaction in 5% yield and characterized by single-crystal X-ray diffraction analysis.  相似文献   

18.
Trinuclear complexes of group 6, 8, and 9 transition metals with a (μ3‐BH) ligand [(μ3‐BH)(Cp*Rh)2(μ‐CO)M′(CO)5], 3 and 4 ( 3 : M′=Mo; 4 : M′=W) and 5 – 8 , [(Cp*Ru)33‐CO)23‐BH)(μ3‐E)(μ‐H){M′(CO)3}] ( 5 : M′=Cr, E=CO; 6 : M′=Mo, E=CO; 7 : M′=Mo, E=BH; 8 : M′=W, E=CO), have been synthesized from the reaction between nido‐[(Cp*M)2B3H7] (nido‐ 1 : M=Rh; nido‐ 2 : M=RuH, Cp*=η5‐C5Me5) and [M′(CO)5 ? thf] (M′=Mo and W). Compounds 3 and 4 are isoelectronic and isostructural with [(μ3‐BH)(Cp*Co)2(μ‐CO)M′(CO)5], (M′=Cr, Mo and W) and [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2M′′H(CO)3], (M′′=Mn and Re). All compounds are composed of a bridging borylene ligand (B?H) that is effectively stabilized by a trinuclear framework. In contrast, the reaction of nido‐ 1 with [Cr(CO)5 ? thf] gave [(Cp*Rh)2Cr(CO)3(μ‐CO)(μ3‐BH)(B2H4)] ( 9 ). The geometry of 9 can be viewed as a condensed polyhedron composed of [Rh2Cr(μ3‐BH)] and [Rh2CrB2], a tetrahedral and a square pyramidal geometry, respectively. The bonding of 9 can be considered by using the polyhedral fusion formalism of Mingos. All compounds have been characterized by using different spectroscopic studies and the molecular structures were determined by using single‐crystal X‐ray diffraction analysis.  相似文献   

19.
New radical cation salts (BEDT-TTF)2[3,3′-Co(1,2-C2B9H11)2] (1), (BEDT-TTF)2[8-I-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (2), (BMDT-TTF)[3,3′-Co(1,2-C2B9H11)2] (3) and (TMTSF)2[3,3′-Fe(1,2-C2B9H11)2] (4) were synthesized and their crystal structures and electrical conductivities were determined. Compound 4 is isostructural to the earlier reported Co analogue. All the radical cation salts synthesized are semiconductors.  相似文献   

20.
The structures of the metallacarborane cations [(-9-Me2S-7,8-C2B9H10)Ni(-Cp)Ni(-9-Me2S-7,8-C2B9H10)]+ (2) and [Cp*Ru(Me2S-C2B9H10)RuCp*]+ (4b) were established by X-ray diffraction analysis. These results confirmed the triple-decker structure proposed for complex 2 earlier, whereas complex 4b proved to be 13-vertex dimetallacarborane rather than the triple-decker complex, as has been suggested earlier.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1879–1883, September, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号