首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mechanism that accounts for the acoustic nonlinearity of cracks partially filled with a viscous liquid is proposed. The mechanism is related to the nonlinear dependences of the capillary and viscous pressures in liquid on the distance between the crack surfaces and on the rate of change of this distance. The nonlinear equation of state is obtained for this type of cracks, and the parameters of this equation are determined. It is shown that the presence of a viscous liquid can lead to a considerable increase in the acoustic nonlinearity of such cracks, as compared to the cracks filled with an ideal liquid.  相似文献   

2.
The theoretical investigation of mechanisms of the acoustic nonlinearity (elastic and inelastic) of cracks partially filled with an ideal and viscous liquid and associated with the nonlinear dependence of the capillary and viscous pressure in the liquid on the distance between the crack surfaces and the velocity of the change of this distance is proposed. The nonlinear (in cubic approximation) equations of the state of these cracks is obtained, and its parameters are defined. It is shown that the presence of the viscous liquid may lead to the considerable increase of the acoustic nonlinearity of such cracks in comparison with cracks filled with the ideal liquid.  相似文献   

3.
Based on an equivalent medium approach, this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation, sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of micropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore, multiple scattering has been taken into account, which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%.  相似文献   

4.
In the framework of a rheological model, a nonlinear dynamic equation of state of a microinhomogeneous medium containing nonlinear viscoelastic inclusions is derived. The frequency dependences of the effective nonlinear parameters are determined for the difference frequency and second harmonic generation processes in the case of a quadratic elastic nonlinearity. It is shown that the frequency dependence of the nonlinear elasticity of the medium is governed by the linear relaxation response of the inclusions at the primary excitation frequency, as well as by the relaxation of the inclusions at the nonlinear generation frequencies.  相似文献   

5.
The possibility of degenerate internal nonlinear resonance interaction between capillary waves with arbitrary symmetry (arbitrary azimuthal numbers) on the surface of a charged cylindrical jet of an ideal incompressible conducting liquid is demonstrated. The jet moves in an ideal incompressible dielectric medium collinearly with an external uniform electrostatic field. It is shown, in particular, that six different resonance situations take place for axisymmetric waves in which primary waves and waves due to the nonlinearity of the equations of hydrodynamics exchange energy.  相似文献   

6.
The transformation of the envelope of a Gaussian pulse incident on and reflecting from a nonlinear dispersive medium is studied. It is shown that the pulse envelope transforms considerably upon reflection near the optical resonance frequency and the nonlinearity of the medium may appreciably distort the reflected pulse. Away from the resonance frequency, conditions may arise when the shift of the reflected pulse does not lead to the loss of the Gaussian form. In this case, the influence of nonlinearity is insignificant.  相似文献   

7.
In the approximation of weak nonlinearity and weak viscosity of the medium, we obtain an equation describing the spectral density of the particle horizontal velocity for a Rayleigh wave propagating along the boundary of a half-space. The coefficients of nonlinear interaction between the wave harmonics are found on the assumption that the third-order elastic moduli arbitrarily depend on the depth. We find expressions for the complex correction to the wave frequency due to small relaxation corrections to the elastic moduli and small variations in the medium density, which arbitrarily depend on the depth as well. The imaginary part of this correction to the frequency determines the decay of the linear Rayleigh wave due to small relaxation corrections to the elastic moduli arbitrarily dependent on the depth. Using numerical simulation (with allowance for the interaction of 500 harmonics), we study distortions of an initially harmonic Rayleigh wave for a particular dependence of variations in the nonlinear moduli on the depth. An integral equation is derived for the nonlinear elastic moduli as functions of the depth. It is shown that for independent spatio-temporal distributions of the viscous moduli, functions determining the dependence of the viscosity on the depth are described by an analogous integral equation. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 3, pp. 212–226, March 2007.  相似文献   

8.
A model of a planar defect with nonlinear properties, which separates media with a Kerr-type nonlinearity, has been considered. It has been found that new steady states appear in a medium with self-focusing because of the nonlinearity of the defect, which do not occur in the case of a linear defect. The energies of such states have been obtained in an analytical form. The conditions for existence of such states have been determined depending on the characteristics of the defect and medium.  相似文献   

9.
We have studied both experimentally and numerically the dynamic effect of nonlinearity on lasing in disordered medium. The third-order nonlinearity not only changes the frequency and size of lasing modes, but also modifies the laser emission intensity and laser pulse width. When the nonlinear response time is longer than the lifetime of the lasing mode, the nonlinearity changes the laser output through modifying the size of the lasing mode. When the nonlinear response is faster than the buildup of the lasing mode, positive nonlinearity always extracts more laser emission from the random medium due to the enhancement of single particle scattering.  相似文献   

10.
The optical coefficients of a nonlinearity for a macroscopic ensemble of aggregates of metal nanoparticles that is caused by deformation of the spatial structure of clusters in a strong light field are calculated for the first time. For a continuous medium that consists of a nonabsorbing dielectric containing aggregated silver nanoparticles that do not possess an intrinsic optical nonlinearity, coefficients of nonlinear absorption are obtained in relation to the intensity and frequency of incident light. It is shown that, at intensities of up to a few megawatts per square centimeter, the addition to the absorption of a nanocomposite to be modeled is adequately described by a third-order nonlinearity. The magnitude and sign of the nonlinear absorption coefficient agree well with the previously obtained experimental data for aggregated silver and gold colloids under nanosecond excitation.  相似文献   

11.
The preliminary aim of this article is to investigate the effect of magnetohydrodynamic (MHD) flows of a viscous fluid due to a superlinear stretching sheet. These boundary layer flows arise in the industrial processes such as polymer extrusion processes, metal spinning, glass blowing and heat exchangers. The representing frameworks of highly nonlinear partial differential equations are mapped to nonlinear ordinary differential equations with a constant coefficient via similarity transformation and are solved analytically. The results are analyzed by means of various plots to provide the comparison and found to be in better agreement with the classical results of Crane and Pavlov. The viscous fluid due to a superlinear stretching sheet in the presence ofMHDhas enormous amount of nonlinearity in conducting the solution area with different arrangements.  相似文献   

12.
We consider nonlinear gravity-capillary waves with the nonlinearity parameter ? ~ 0.1–0.25. For this nonlinearity, time scale separation does not occur and the kinetic wave equation does not hold. An energy cascade in this case is built at the dynamic time scale (D-cascade) and is computed by the increment chain equation method first introduced in [15]. We for the first time compute an analytic expression for the energy spectrum of nonlinear gravity-capillary waves as an explicit function of the ratio of surface tension to the gravity acceleration. We show that its two limits—pure capillary and pure gravity waves on a fluid surface—coincide with the previously obtained results. We also discuss relations of the D-cascade model with a few known models used in the theory of nonlinear waves such as Zakharov’s equation, resonance of modes with nonlinear Stokes-corrected frequencies, and the Benjamin-Feir index. These connections are crucial in understanding and forecasting specifics of the energy transport in a variety of multicomponent wave dynamics, from oceanography to optics, from plasma physics to acoustics.  相似文献   

13.
This paper uses the Beam Propagation Method to investigate numerically the switching behavior of a Nonlinear Mach-Zehnder Interferometer (NMZI). A saturating-type nonlinearity has been considered for the present investigations. It is shown that the input versus output characteristics change drastically when a Kerr type nonlinear medium is replaced by a saturating type nonlinear medium. In contrast to an NMZI with Kerr nonlinearity, where only quantitative behavior changes with NMZI length, quantitative as well as qualitative behaviors change in the case of a saturating nonlinearity. We propose an all-optical stabilizer and MZI with stable “ON” and “OFF” states on the basis of our investigation.  相似文献   

14.
庄军  谭维翰 《光学学报》1996,16(4):94-398
通过数值模拟研究了非线性腔的横向效应,非线性表现在光场通过放大介质时所引起的相位变化与强度有关,模拟结果显示,随着非线性系数的变化,腔中的光场分布表现丰富的时空不稳定行为,其中包括横模跳变,时空周期行为以及光学涡旋的出现。  相似文献   

15.
This work presents an approximate nonlinear analytical model for the problem of fluid-structural interaction in a valveless micropump. The model is constructed using the lumped-mass approach and takes into account the inertial force and time variation of mass density of the working fluid within the micropump chamber, pressure viscous losses of the flow through the diffuser/nozzle elements and the structural geometric nonlinearity due to the membrane mid-plane stretching. It consists of a set of coupled partial integro-differential equations which is reduced to a third order nonlinear coupled fluid-plate vibration equation by using the assumed mode method to approximate the plate dynamic deflection. An approximate analytical solution for the nonlinear vibration model is carried out using the harmonic balance method and is used to investigate the effect of various system parameters on the performance of the micropump. The obtained model and approximate analytical results are compared with those available in the open literature. The approximate analytical results show that, depending on the micropump physical parameters and membrane driving frequency, the working fluid stiffness, which arise in the present model as a result of taking into account the variation of the fluid density with time, and the membrane geometric nonlinearity can have significant effects on the predicted micropump performance and can lead to a complex nonlinear dynamic behavior. The accuracy of these results is subject to a future numerical validation of the presented approximate theoretical model.  相似文献   

16.
The nonlinear propagation of an initially harmonic acoustic wave in a microinhomogeneous medium containing defects with quadratic hysteretic nonlinearity and relaxation is studied by the perturbation method. The frequency dependences of the effective nonlinearity parameters are determined for the self-action of the quasi-harmonic acoustic wave and the higher harmonic generation processes.  相似文献   

17.
The variation in the velocity of propagation of a narrowband frequency-modulated pulse in a nonlinear medium with dispersion of gain or absorption is studied. It is shown that the self-phase modulation caused by a cubic nonlinearity of the Kerr type can “accelerate” optical pulses of a Gaussian shape up to superluminal velocities even in the case where an initial frequency modulation (chirp) is absent.  相似文献   

18.
Nonlinear Elastic Wave Spectroscopy (NEWS) relies on the activation of defects by wave energy that propagates through the medium. In general, the response of activated defects will not scale linearly with the excitation amplitude, and the resulting nonlinear signatures can be identified and used for quality inspection. The efficiency of NEWS based inspection methods is therefore intrinsically linked to the locally deposited activation energy at the defect zone and the ability to generate nonlinear signatures that exceed the noise level of acquisition. Time Reversal techniques allow focusing of high levels of energy in small areas, and are consequently very useful for the local activation of defected zones. In this report, numerical simulations are reported showing the potential of a combination consisting of dual energy reciprocal Time Reversal and nonlinearity filtering using the Scaling Subtraction Method. The method is applied to the detection of planar near-surface defects parallel to the surface in a 2D domain. The results are evaluated for sweep excitation at different frequency ranges; for point-like receiver as well as extended transducers, and for in-plane as well as out-of-plane focusing. The observable nonlinear response at the surface is linked to an effective nonlinearity within the medium based on the defect geometry and the distribution of the local stresses.  相似文献   

19.
It is shown that optomechanical forces can cause nonlinear self-channeling of light in a planar dual-slab waveguide. A system of two parallel silica nanowebs, spaced ~100 nm and supported inside a fiber capillary, is studied theoretically and an iterative scheme developed to analyze its nonlinear optomechanical properties. Steady-state field distributions and mechanical deformation profiles are obtained, demonstrating that self-channeling is possible in realistic structures at launched powers as low as a few mW. The differential optical nonlinearity of the self-channeled mode can be as much as 10×10(6) times higher than the corresponding electronic Kerr nonlinearity. It is also intrinsically broadband, does not utilize resonant effects, can be viewed as a consequence of the extreme nonlocality of the mechanical response, and in fact is a notable example of a so-called accessible soliton.  相似文献   

20.
A four level ladder scheme is employed for the realization of slow light large Kerr nonlinear indices in an asymmetric semiconductor three-coupled-quantum-well (TCQW) structure based on intersubband transitions. It is shown that a giant Kerr nonlinearity accompanied with negligible loss can be achieved by properly tuning the intensity of the control fields. A dressed state analysis is given to explain the origin of such a transparency based on slow light enhanced Kerr nonlinearity in this solid medium. In addition, we show that the three-photon detuning plays the important role in enhancing the third-order nonlinearity of the TCQW medium, and may provide new possibilities for technological applications in nonlinear optics and optical switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号