首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We use the Flory-Huggins theory to demonstrate conditions of extra solvent power of ionic liquids. The short-range interactions between anions, cations, and molecules of the solute are taken into account. We find that solvent power of the ionic liquids is enhanced if non-Coulomb interactions between the anions and cations are repulsive. The mechanism responsible for the extra solvent power is related to the "shielding" of the anion-cation interactions by the molecules of the solute.  相似文献   

2.
3.
正The certified power conversion efficiency (PCE) of perovskite solar cells which have emerged as the most promising candidates for next-generation thin-film photovoltaics has exceeded 25%.Among all available compositions,formamidinium lead iodide perovskite(FAPbI_3) has a theoretically higher efficiency than the other perovskite analogues due to its narrower bandgap [1,2] and hence has attracted widespread attention.However,due to the large size of the formamidinium cation,the black-phase of FAPbI_3 is metastable at room temperature and tends to transform to non-photoactiveδ-phase [3],which greatly limits its applications.Therefore,stabilizing the black-phase of FAPbI_3 at room temperature has become a great challenge in the community,which urgently needs a remedy.  相似文献   

4.
5.
Guanidinium-based ionic liquids   总被引:4,自引:0,他引:4  
Cyclic (subset=N+<, subset = imidazolidine 3 and 4, hexahydro-pyrimidine 7 and 8, tetrahydro-1,3,5-oxadiazine 12, and triazoline 15 and 16) and acyclic [(R2N)2C=N+<, 19] guanidinium-based salts were synthesized via the quaternization of guanidine derivatives with nitric or perchloric acid or with iodomethane followed by metathesis reaction with silver nitrate, silver perchlorate, or ammonium dinitroamide. The structure of 15d was confirmed by single-crystal X-ray analysis. Most of the salts exhibited low melting points and good thermal stabilities. Their densities range between 1.2 and 1.5 g/cm3. Standard molar enthalpies of formation were calculated from experimentally determined constant-volume combustion energies obtained using an oxygen bomb calorimeter.  相似文献   

6.
The conservation of paintings is fundamental to ensure that future generations will have access to the ideas of the grand masters who created these art pieces. Many factors, such as humidity, temperature, light, and pollutants, pose a risk to the conservation of paintings. To help with painting conservation, it is essential to be able to noninvasively study how these factors affect paintings and to develop methods to investigate their effects on painting degradation. Hence, the use of mobile nuclear magnetic resonance (NMR) as a method of investigation of paintings is gaining increased attention in the world of Heritage Science. In this mini-review, we discuss how this method was used to better understand the stratigraphy of paintings and the effect different factors have on the painting integrity, to analyze the different cleaning techniques suitable for painting conservation, and to show how mobile NMR can be used to identify forgeries. It is also important to keep in mind its limitations and build upon this information to optimize it to extend its applicability to the study of paintings and other precious objects of cultural heritage.  相似文献   

7.
The alkylation reaction of 2-mercapto-1-methylimidazole 1a with iodoethane and chlorobutane produced S-alkylmethimazole halides 2a and 2b which were subjected to anion metathesis with two different metal salts (MA) to afford methimazole-based room-temperature ionic liquids 3a, 3b, and 3c in 82%, 85%, and 87% yields, respectively. S-Alkylation giving 2a and 2b suggests that methimazole reacts through the thione tautomer.  相似文献   

8.
Ionic liquids are salts that are liquid at or near room temperature. Their wide liquid range, good thermal stability, and very low vapor pressure make them attractive for numerous applications. The general approach to creating ionic liquids is to employ a large, unreactive, low symmetry cation with and an anion that largely controls the physical and chemical properties. The most common cations used in ionic liquids are N-alkylpyridinium and N,N′-dialkylimidazolium. Another very effective cation for the creation of ionic liquids is tetraalkylphosphonium, [PR1R2R3R4]+. The alkyl groups, Rn, generally are large and not all the same. The halide salts of several phosphonium cations are available as starting materials for metathesis reactions used to prepare ionic liquids. The large phosphonium cations can combine with relatively large anions to make viscous but free flowing liquids with formula mass greater than 1000 g mol−1. Some other more massive salts are waxes and glasses. The synthesis and the physical, chemical, and optical properties of phosphonium-ionic liquids having anions with a wide range of masses were measured and are reported here.  相似文献   

9.
A total of sixty-three choline derivative-based ionic liquids in the forms of chlorides, acesulfamates, and bis(trifluoromethylsulfonyl)imides have been prepared and their physical properties (density, viscosity, solubility, and thermal stability) have been determined. Thirteen of these salts are known chlorides: precursors to the 26 water-soluble acesulfamates, 12 acesulfamates only partially miscible with water, and 12 water-insoluble imides. The crystal structures for two of the chloride salts-(2-hydroxyethyl)dimethylundecyloxymethylammonium chloride and cyclododecyloxymethyl(2-hydroxyethyl)dimethylammonium chloride-were determined. The antimicrobial (cocci, rods, and fungi) activities of the new hydrophilic acesulfamate-based ILs were measured and 12 were found to be active. The alkoxymethyl(2-hydroxyethyl)dimethylammonium acesulfamates have been shown to be insect feeding deterrents and thus open up a new generation of synthetic deterrents based on ionic liquids. The alkoxymethyl(2-decanoyloxyethyl)dimethylammonium bis(trifluoromethylsulfonyl)imides have also been shown to act as fixatives for soft tissues and can furthermore be used as substitutes for formalin and also preservatives for blood.  相似文献   

10.
Practical and theoretical considerations that apply when aiming to formulate by ultrasonication very small nanoemulsions (particle diameter up to 150 nm) with very high stability are presented and discussed. The droplet size evolution during sonication can be described by a monoexponential function of the sonication time, the characteristic time scale depending essentially on the applied power. A unique master curve is obtained when plotting the mean diameter size evolution as a function of sonication energy. We then show that Ostwald ripening remains the main destabilization mechanism whereas coalescence can be easily prevented due to the nanometric size of droplets. The incorporation of "trapped species" within the droplet interior is able to counteract Ostwald ripening, and this concept can be extended to the membrane compartment. We finally clarify that nanoemulsions are not thermodynamically stable systems, even in the case where their composition lies very close to the demixing line of a thermodynamically stable microemulsion domain. However, as exemplified in the present work, nanoemulsion systems can present very long-term kinetic stability.  相似文献   

11.
The knowledge of liquid–liquid equilibria (LLE) of the ternary systems (hexane or heptane + ethanol + 1-ethyl-3-methylimidazolium ethylsulfate (EMIM EtSO4)) is essential for the separation of alkanes from their azeotropic mixtures with ethanol. The experimental LLE have been determined at 298.15 K and atmospheric pressure. Experimental LLE are correlated using NRTL equation. The solvent capacity of the IL is compared with others aiming to analyze the efficiency of these molten salts used as entrainers. The extraction processes with this IL are simulated using conventional software. A comparison of the alkylsulfate-based IL's ability for the extraction process, determined from the simulation results, is enclosed.  相似文献   

12.
Ha SH  Mai NL  Koo YM 《Journal of chromatography. A》2010,1217(49):7638-7641
Microwave-assisted separation has been applied to recover ionic liquid (IL) from its aqueous solution as an efficient method with respect to time and energy compared to the conventional vacuum distillation. Hydrophilic ILs such as 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-ethyl-3-methylimidazolium methylsulfate ([Emim][MS]) could be recovered in 6 min from the mixture of ILs and water (1:1, w/w) under microwave irradiation at constant power of 10 W while it took at least 240 min to obtain ILs containing same water content (less than 0.5 wt%) by conventional vacuum oven at 363.15 K with 90 kPa of vacuum pressure. Energy consumptions per gram of evaporated water from the homogeneous mixture of hydrophilic ILs and water (1:1, w/w) by microwave-assisted separation were at least 52 times more efficient than those in conventional vacuum oven. It demonstrated that microwave-assisted separation could be used for complete recovery of ILs in sense of time and energy as well as relevant purity.  相似文献   

13.
We developed novel supramolecular gelators with simple molecular structures that could harden a broad range of solvents: aqueous solutions of a wide pH range, organic solvents, edible oil, biodiesel, and ionic liquids at gelation concentrations of 0.1-2 wt %. The supramolecular gelators were composed of a long hydrophobic tail, amino acids and gluconic acid, which were prepared by liquid-phase synthesis. Among seven types of the gelators synthesized, the gelators containing L-Val, L-Leu, and L-Ile exhibited high gelation ability to various solvents. These gelators were soluble in aqueous and organic solvents, and also in ionic liquids at high temperature. The gelation of these solvents was thermally reversible. The microscopic observations (TEM, SEM, and CLSM) and small-angle X-ray scattering (SAXS) measurements suggested that the gelator molecules self-assembled to form entangled nanofibers in a large variety of solvents, resulting in the gelation of these solvents. Molecular mechanics and density functional theory (DFT) calculations indicated the possible molecular packing of the gelator in the nanofibers. Interestingly, the gelation of an ionic liquid by our gelator did not affect the ionic conductivity of the ionic liquid, which would provide an advantage to electrochemical applications.  相似文献   

14.
An ionic liquid "reagent" bearing a succinimidyl activated ester is reported that can be used to synthesize a variety of small molecule and macromolecular ionic liquids. In addition, the ionic liquid reagent was used to modify lysozyme, and the protein retained its structure and function after modification. This study describes a facile and reliable route to new ionic liquid compositions.  相似文献   

15.
Polynitrogen ligands and/in ionic liquids (ILs) are described as a pertinent tandem to efficiently stabilize rhodium nanoparticles (NPs) in the size range of 2.0 nm for catalytic applications. Several N-donor ligands based on bipyridine skeleton were used as extra protective agents in [BMI][PF(6)] and compared in the hydrogenation of functionalized aromatic compounds at 80 °C and under 40 bar H(2). The nature of the bipyridine derivative and its influence on the coordination mode on the particle surface were proposed to explain the observed different kinetic properties. The hydrogenation of various oxygen-containing arenes was investigated and original results were described in the reduction of anisole and cresols as model lignin compounds, providing a significant ratio of ketone derivatives. A first explanation based on possible reaction routes is proposed to justify the formed products.  相似文献   

16.
17.
Lewis base ionic liquids   总被引:4,自引:0,他引:4  
Ionic liquids which are (weak) Lewis bases have a number of interesting and useful properties different to those of traditional ionic liquids, including volatility and the possibility of being distillable in some cases, a base catalysis effect in others and enhancement of the acidity of dissolved acids.  相似文献   

18.
Mutually immiscible ionic liquids   总被引:1,自引:0,他引:1  
This work presents the novel discovery of room-temperature ionic liquids that are mutually immiscible, some of which are also immiscible with solvents as diverse as water and alkanes; an archetypal biphasic system is trihexyltetradecylphosphonium chloride with 1-alkyl-3-methylimidazolium chloride (where the alkyl group is shorter than hexyl).  相似文献   

19.
Dicationic ionic liquids with bis(trifluoromethylsulfonyl)imide anions and dimethylimidazolic moieties linked by the polymeric siloxane chain in the cation structure have been synthesized. Thermal stability of the compounds synthesised was studied by TGA; glass transition temperatures, viscosities and volatility in vacuo were measured. Applicability of these ionic liquids as heat carriers under high dynamic vacuum conditions is shown.  相似文献   

20.
A number of imidazolium ionic liquids with bis(trifluoromethylsulfonyl)imide anion containing a ω-hydroxyalkyl substituent of different lengths in the cation (nС = 2–8) were synthesized. The properties of the obtained liquids were investigated by DSC, TGA, IR, and NMR spectroscopy. Their thermal stability was studied; melting points, viscosity, and volatility in vacuum were measured. The possibility of using synthesized ionic liquids as heat carriers under high vacuum conditions is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号