首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five kinds of molybdovanadophosphoric acid: H7[P2Mo17VO62], H8[P2Mo16V2O62], H9[P2Mo15V3O62], H8[P2Mo14V4O61(H2O)] and H9[P2Mo13V5O61(H2O)] have been synthesized. The salts, K13[Ln(SiW11O39)2] (Ln=La, Ce, Pr, Nd or Gd) have also been prepared. The proton conductivities (C) of all the above compounds have been measured, and are dependent not only on the nature of compound itself, but also on external factors such as temperature and frequency. The general trend of proton conductivity, changing with the hydration number, frequency and temperature is summarized and important conclusions have been drawn based on experimental measurements. The resulting data have not been reported hitherto in the literature.  相似文献   

2.
A novel compound, (Himi)(H(3)O) [Cu(imi)(2)](2)[P(2)Mo(5)O(23)].H(2)O 1 (imi=imidazole), was synthesized by hydrothermal method and characterized by X-ray single analysis, ESR spectrum, one-dimensional (1D) infrared spectroscopy and two-dimensional (2D) correlation infrared spectroscopy under thermal and magnetism perturbation. Crystal data for the compound 1: orthorhombic system, space group Pnma, a = 14.580(3)A, b = 21.073(4)A, c = 16.664(3)A, Z = 4. It consists of the Mo-Cu building-blocks [Cu(imi)(4)](2)[P(2)Mo(5)O(23)](2-), protonated imidazole cations and water molecules. In the Mo-Cu building-blocks, [Mo(5)P(2)O(23)](6-) clusters are linked by {Cu(imi)(4)}(2+) group to form a two-dimension parallelogram griddling structure. From the 2D IR correlation spectroscopy analyses, it is discovered that the intensity changes of Mo=O and P-O band are sensitive to the temperature variation, whereas the Mo-O bond linking to Cu(2+) can be remarkably affected by the magnetism variation. Furthermore, the intensity changes of P-O bands occur prior to that of the Mo=O band during the temperature elevation.  相似文献   

3.
The hydrothermal reactions of MoO(3), an appropriate Cu(II) source, tetra-2-pyridylpyrazine (tpypyz), and phosphoric acid and/or an organophosphonate yielded a series of organic-inorganic hybrid materials of the copper-molybdophosphonate family. A common feature of the structures is the entrainment within the extended architectures of chemically robust [Mo(5)O(15)(O(3)PR)(2)](4)(-) clusters as molecular building blocks. The cluster is a characteristic feature of the one-dimensional materials [[Cu(2)(tpypyz)(H(2)O)(3)]Mo(5)O(15)(HPO(4))(O(3)PCH(2)CO(2)H)].H(2)O (1.H(2)O) and [[Cu(2)(tpypyz)(H(2)O)]Mo(5)O(15)(O(3)PC(6)H(5))(2)].2H(2)O (2.2H(2)O), the two-dimensional network [[Cu(2)(tpypyz)(H(2)O)(3)]Mo(5)O(15)(HPO(4))(2)].2H(2)O (5.2H(2)O) and the three-dimensional frameworks [[Cu(2)(tpypyz)(H(2)O)(2)]Mo(5)O(15)[O(3)P(CH(2))(n)()PO(3)]].xH(2)O [n = 3, x = 2.25 (6.2.25H(2)O); n = 4, x = 0.33 (7.0.33H(2)O)]. In the case of methylenediphosphonate as the phosphorus component, the unique chelating nature of the ligand precludes formation of the pentamolybdate core, resulting in the chain structures [[Cu(2)(tpypyz)(H(2)O)]Mo(3)O(8) (HO(3)PCH(2)PO(3))(2)].8H(2)O (3.8H(2)O) and [[Cu(2)(tpypyz)(H(2)O)](2)(Mo(3)O(8))(2)(O(3)PCH(2)PO(3))(3)].16.9H(2)O (4.16.9H(2)O). For structures 1-7, the secondary metal-ligand building block is the binuclear [Cu(2)(tpypyz)(H(2)O)(x)](4+) cluster. There is considerable structural versatility as a result of the variability in the number of attachment sites at the phosphomolybdate clusters, the coordination geometry of the Cu(II), which may be four-, five-, or six-coordinate, the extent of aqua ligation, and the participation of phosphate oxygen atoms as well as molybdate oxo groups in bonding to the copper sites. Crystal data: 1.H(2)O, C(26)H(28)N(6)Cu(2)Mo(5)O(28)P(2), monoclinic C2/c, a = 42.497(2) A, b = 10.7421(4) A, c = 20.5617(8) A, beta = 117.178(1) degrees, V = 8350.1(5) A(3), Z = 8; 2.2H(2)O, C(36)H(32)N(6)Cu(2)Mo(5)O(24)P(2), monoclinic P2(1)/c, a = 11.2478(7) A, b = 19.513(1) A, c = 21.063(1) A, beta = 93.608(1) degrees, V = 4613.7(5) A(3), Z = 4; 3.8H(2)O, C(26)H(40)N(6)Cu(2)Mo(3)O(29)P(4), monoclinic C2/c, a = 32.580(2) A, b = 17.8676(9) A, c = 15.9612(8) A, beta = 104.430(1) degrees, V = 8993.3(8) A(3), Z = 8; 4.16.9H(2)O, C(51)H(71.75)Cu(4)Mo(6)N(12)O(51)P(6), monoclinic P2(1)/c, a = 27.929(3) A, b = 12.892(2) A, c = 22.763(3) A, beta = 90.367(2) degrees, V = 8195.7(2) A(3), Z = 4;( )()5.2H(2)O, C(24)H(28)N(6)Cu(2)Mo(5)O(28)P(2), monoclinic P2(1)/n, a = 11.3222(4) A, b = 18.7673(7) A, c = 19.4124(7) A, beta = 98.819(1) degrees, V = 4076.1(3) A(3), Z = 4; 6.2.25H(2)O, C(27)H(28.5)N(6)Cu(2)Mo(5)O(24.25)P(2), monoclinic C2/c, a = 12.8366(5) A, b = 18.4221(8) A, c = 34.326(1) A, beta = 100.546(1) degrees, V = 7980.1(6) A(3), Z = 8; 7.(1)/(3)H(2)O, C(28)H(28.7)N(6)Cu(2)Mo(5)O(23.3)P(2), monoclinic C2/c, a = 12.577(1) A, b = 18.336(1) A, c = 36.476(3) A, beta = 91.929(2) degrees, V = 8407.3 A(3), Z = 8.  相似文献   

4.
The hydrothermal reactions of a Cu(II) starting material, a molybdate source, 2,2'-bipyridine or terpyridine, and the appropriate alkyldiphosphonate ligand yield two series of bimetallic organophosphonate hybrid materials of the general types [Cu(n)(bpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)] and [Cu(n)(terpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)]. The bipyridyl series includes the one-dimensional materials [Cu(bpy)(MoO(2))(H(2)O)(O(3)PCH(2)PO(3))] (1) and [[Cu(bpy)(2)][Cu(bpy)(H(2)O)](Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)CH(2)PO(3))].H(2)O (5.H(2)O) and the two-dimensional hybrids [Cu(bpy)(Mo(2)O(5))(H(2)O)(O(3)PCH(2)PO(3))].H(2)O (2.H(2)O), [[Cu(bpy)](2)(Mo(4)O(12))(H(2)O)(2)(O(3)PCH(2)CH(2)PO(3))].2H(2)O (3.2H(2)O), and [Cu(bpy)(Mo(2)O(5))(O(3)PCH(2)CH(2)CH(2)PO(3))](4). The terpyridyl series is represented by the one-dimensional [[Cu(terpy)(H(2)O)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)PO(3))].3H(2)O (7.3H(2)O) and the two-dimensional composite materials [Cu(terpy)(Mo(2)O(5))(O(3)PCH(2)PO(3))] (6) and [[Cu(terpy)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)PO(3))] (8). The structures exhibit a variety of molybdate building blocks including isolated [MoO(6)] octahedra in 1, binuclear subunits in 2, 4, and 6, tetranuclear embedded clusters in 3, and the prototypical [Mo(5)O(15)(O(3)PR)(2)](4-) cluster type in 5, 7, and 8. These latter materials exemplify the building block approach to the preparation of extended structures.  相似文献   

5.
The hydrothermal reaction of CuSO(4).5H2O, Na2MoO(4).2H2O and 2,2'-bipyridine with the bridging diphosphonate ligand H2O3P(CH2)4PO3H2 yields the one-dimensional chain [(Cu(bpy)2)(Cu(bpy)(H2O)2)(Mo5O15)(O3P(CH2)4PO3)].H2O; the introduction of a second bridging component in the reaction of Cu(MeCO2)2.H2O, MoO3, H2O3PCH2CH2PO3H2 and tetra(2-pyridyl)pyrazine yields the network solid [(Cu2(tpypyz)(H2O)2)(Mo5O15)(O3PCH2CH2PO3)].5.5H2O.  相似文献   

6.
采用水热法合成出一种含一价铜配合物的新型双金属钼氧簇合物[5-(4-Br-Ph)-2,4'-Hbpy]2[Cu(5-(4-Br-Ph)-2,4'-bpy)2]2[Mo8O26],并通过X射线单晶结构分析、红外光谱分析、元素分析以及X射线粉末衍射分析对该化合物的结构进行了表征.结果表明,该化合物属单斜晶系,P21/c空间群,晶胞参数a=1.4411(3)nm,b=1.3924(3)nm,c=2.5183(5)nm,β=99.06(3)°,V=4.990(17)nm3,Z=2;该化合物是由一价铜配合物{Cu(5-(4-Br-Ph)-2,4'-bpy)2}+与{β-Mo8O26}4-簇通过共价配位键连接形成的新型多金属钼酸盐,其中游离的质子化配体作为抗衡阳离子.  相似文献   

7.
The oxomolybdenum-arsonate system was investigated under hydrothermal conditions in the presence of charge-compensating copper(II)-organonitrogen complex cations as secondary building blocks. A series of materials of the Mo/O/As/Cu/ligand family has been prepared and structurally characterized. The architectures of the products reflect the identity of the arsonate component and the organonitrogen ligand, as well as the reaction conditions. The structural versatility of this emerging class of compounds is manifested by the one-dimensional structures of [[Cu(o-phen)(H(2)O)(2)](2)Mo(6)O(18)(O(3)AsOH)(2)] (1), [[Cu(terpy)](2)Mo(4)O(13)H(AsO(4))(2)].2H(2)O (2.2H(2)O), [[Cu(2,2'-bpy)(H(2)O)](2)Mo(6)O(18)(O(3)AsC(6)H(5))(2)].2H(2)O (4.2H(2)O), and [[Cu(o-phen)(H(2)O)](2)[Mo(6)O(18)(O(3)AsC(6)H(5))(2)]].4H(2)O (5.4H(2)O), by the two-dimensional materials [[Cu(2)(tpyprz)(H(2)O)(2)]Mo(6)O(18)(O(3)AsOH)(2)].2H(2)O (3.2H(2)O), [[Cu(terpy)](2)Mo(6)O(18)(O(3)AsC(6)H(5))(2)].H(2)O (6.H(2)O), and [[Cu(2)(tpyprz)]Mo(6)O(18)(O(3)AsC(6)H(5))(2)].2H(2)O (7.2H(2)O), and the molecular clusters [[Cu(2,2'-bpy)(2)](2)Mo(12)O(34)(O(3)AsC(6)H(5))(4)].2.35H(2)O (8.2.35H(2)O) and [Cu(o-phen)(H(2)O)(3)][Cu(o-phen)(2)Mo(12)O(34) (O(3)AsC(6)H(5))(4)].3H(2)O (9.3H(2)O).  相似文献   

8.
The syntheses and structural and physical characterization of the compounds [Cu(bipy)(2)](2)[Mo(CN)(8)].5H(2)O. CH(3)OH (1) with bipy = 2,2'-bipyridine and M(II)(2)[Mo(IV)(CN)(8)].xH(2)O (2 with M = Cu, x = 7.5; 3 with M = Mn, x = 9.5) are presented. 1 crystallizes in the triclinic space group P1; (a = 11.3006(4) A, b = 12.0886(5) A, c = 22.9589(9) A, alpha = 81.799(2) degrees, beta = 79.787(2) degrees, gamma = 62.873(2) degrees, Z = 2). The structure of 1 consists of neutral trinuclear molecules in which a central [Mo(CN8)](4-) anion is linked to two [Cu(bipy)2](2+) cations through two cyanide bridges. 2 crystallizes poorly, and hence, structural information has been obtained from the wide-angle X-ray scattering (WAXS) technique, by comparison with 3 and Fe(II)(2)(H(2)O)(4)[Mo(IV)(CN)(8)].4H(2)O whose X-ray structure has been previously solved. 2, 3, and Fe(II)(2)(H(2)O)(4)[Mo(IV)(CN)(8)].4H(2)O form extended networks with all the cyano groups acting as bridges. The magnetic properties have shown that 1 and 2 behave as paramagnets. Under irradiation with light, they exhibit important modifications of their magnetic properties, with the appearance at low temperature of magnetic interactions. For 1 the modifications are irreversible, whereas they are reversible for 2 after cycling in temperature. These photomagnetic effects are thought to be caused by the conversion of Mo(IV) (diamagnetic) to Mo(V)(paramagnetic) through a photooxidation mechanism for 1 and a photoinduced electron transfer in 2. These results have been correlated with the structural features.  相似文献   

9.
Cu4Mo6Se8 has been synthesized by intercalation of Cu into Cu2Mo6Se8 at room temperature, and its crystal structure has been determined. This compound crystallizes in the triclinic space group P, with a = 6.7609(8) A, b = 6.8122(7) A, c = 7.9355(10) A, alpha = 70.739(4) degrees , beta = 72.669(4) degrees , gamma = 84.555(5) degrees , and Z = 1. Instead of residing in the voids between corners or edges of Mo6Se8 clusters as in the classic R Chevrel structure, the Cu atoms in Cu4Mo6Se8 fully occupy four sites between faces of two adjacent Mo6Se8 clusters. Thus, two of the six Mo atoms in each cluster do not have capping Se atoms from neighboring clusters. This represents a new triclinic structure type for Chevrel phases. In addition to the synthesis and crystal structure, we present and discuss results from electronic structure calculations using both extended Hückel and density functional theory. These calculations predict Cu4Mo6Se8 to be metallic. We also report results from Cu intercalation into Chevrel phase sulfides and tellurides. Preliminary experiments suggest that a telluride analogue of Cu4Mo6Se8 exists.  相似文献   

10.
The hydrothermal reaction of MoO3, Cu(C2H3O2)2.H2O, tpypyz, H3PO4 and H2O yields a 2D material, [(Cu2(tpypyz)(H2O)2)(Mo5O15)(HOPO3)2].2H2O (1.2H2O), constructed from (Mo5O15(HOPO3)2)4- clusters linked through (Cu2(tpypyz)(H2O)2)2+ components; in contrast, use of Cu2O in the synthesis in place of Cu(C2H3O2)2.H2O yields a 3D material [(Cu2(tpypyz)(H2O)2)(Mo5O15)(HOPO3)2].3H2O (2.3H2O), constructed from the same building blocks as 1.2H2O.  相似文献   

11.
The reaction of [(η5-C5Me5)2Mo2(μ3-S)4(CuCl)2] 1 with Na2S in MeCN produced a trinuclear cluster [(η5-C5Me5)2Mo2(μ3-S)(μ-S)3(CuCl)] 2. 2 crystallizes in the monoclinic system, space group P21/c with a = 15.563(3), b = 8.9547(18), c = 17.846(4) , β = 101.29(3)o, V = 2438.9(9) 3, Z = 4, Dc = 1.878 g/cm3, T = 193(2) K, C20H30ClCuMo2S4, Mr = 689.60, F(000) = 1376, μ(MoKα) = 2.335 mm–1, S = 1.050, R = 0.0305 and wR = 0.0688 for 4033 observed reflections with I > 2σ(I). In the structure of 2, one [(η5-C5Me5)2Mo2(μ-S)2S2] moiety and one CuCl unit are assembled into an incomplete cubane-like [Mo2S4Cu] core framework, in which the Cu center adopts a distorted tetrahedral geometry coordinated by one μ3-S atom, two μ-S atoms and one terminal chloride. The two Mo…Cu contacts are 2.7519(7) and 2.7689(8) , respectively.  相似文献   

12.
Wei ZH  Li HX  Zhang WH  Ren ZG  Zhang Y  Lang JP  Abrahams BF 《Inorganic chemistry》2008,47(22):10461-10468
Treatment of [Et 4N] 2[(edt) 2Mo 2S 2(mu-S) 2] ( 1) (edt = ethanedithiolate) with equimolar CuBr afforded an anionic hexanuclear cluster [Et 4N] 2[(edt) 2Mo 2(mu-S) 3(mu 3-S)Cu] 2.2CH 2Cl 2 ( 2.2CH 2Cl 2). On the other hand, reactions of 1 with 2 equiv of CuBr in the presence of 1,2-bis(diphenylphosphino)methane (dppm) and pyridine (Py) ligands gave rise to two neutral tetranuclear clusters [(edt) 2Mo 2O 2(mu-S) 2Cu 2(dppm) 2] ( 3) and [(edt) 2Mo 2O(mu 3-S)(mu-S) 2Cu 2(Py) 4] ( 4), respectively. The reaction of 1 with 2 equiv of CuBr followed by the addition of a mixture of dppm and Py (molar ratio = 1:2) yielded another neutral tetranuclear cluster [(edt) 2Mo 2(mu-S) 2(mu 3-S) 2Cu 2(dppm)(Py)].Py ( 5.Py). Compounds 2- 5 have been characterized by elemental analysis, UV-vis spectra, IR spectra, (1)H NMR, and X-ray analysis. The structure of the dianion of 2 can be viewed as having a [Mo 4S 8Cu 2] core in which two chemically equivalent [Mo 2(mu-S) 3(mu 3-S)(edt) 2Cu] (-) anions are linked by two extra Cu-S edt bonds. The molecular structure of 3 may be visualized as being built of one [(edt) 2Mo 2X 2(mu-S) 2] (2-) dianion and one [Cu 2(dppm) 2] (2+) dication that are connected by a pair of M-mu-S edt bonds. Compound 4 is formed by the affiliation of two Cu(I) atoms only at one end of the [(edt) 2Mo 2S 2(mu-S) 2] moiety, connecting with the S t atoms and the S edt atom. Cluster 5.Py can be viewed as being constructed from the addition of one Cu atom onto the incomplete cubanelike [Mo 2S 4Cu] framework through one terminal sulfur and one edt sulfur. Among the four clusters, 3 and 4 have internal mirror symmetry or pseudo mirror symmetry, respectively, while 2 and 5 are asymmetric clusters with racemic formation.  相似文献   

13.
<正> A new mixed-metal sulfido incomplete cubane cluster [(MoCuS3) (O) (μ-dtp) (PPh3)3] Cdtp = S2P (OC2H5)2] has been prepared by reaction of (NH4)2MoOS3 with Cu(dtp) (PPh3)2 in dimethylformamide solution. It crystallizes in the triclinic space group P1, a = 13.810(5), b = 19. 753(5), c=11. 719(4) A. α=99. 42(2), β=107. 24(3),γ=88. 05(3)°, V = 3012(2)A3, Dc = l. 51g/cm3and Z = 2. Final R=0. 046, Rw = 0. 056 for 7700 unique intensity data(I≥3σ(I)). The central unit [MoCu3S3]3+ can be described as a distorted incomplete cube with one missing corner. The Mo atom is tetrahedrally coordinated by three μ3-S atoms and one terminal O atom. Two Cu atoms are tetrahedrally coordinated whereas the third Cu atom has a highly distorted trigonal environment. The mean Mo - Cu bond length is 2. 752A. The Cu...Cu distances are in the range of 3. 200(1) -3. 740(1) A which are too long to form bonds.  相似文献   

14.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

15.
The hydrothermal reactions of a molybdate source, a nickel(II) salt, tetra-2-pyridylpyrazine (tpyprz), and organodiphosphonic acids H(2)O(3)P(CH(2))(n)()PO(3)H(2) (n = 1-5) of varying tether lengths yielded a series of organic-inorganic hybrid materials of the nickel-molybdophosphonate family. A persistent characteristic of the structural chemistry is the presence of the [Mo(5)O(15)(O(3)PR)(2)](4)(-) cluster as a molecular building block, as noted for the one-dimensional materials [[Ni(2)(tpyprz)(2)]Mo(5)O(15)[O(3)P(CH(2))(4)PO(3)]]x6.65H(2)O (6x6.65H(2)O) and [[Ni(2)(tpyprz)(2)]Mo(5)O(15)[O(3)P(CH(2))(5)PO(3)]]x3.75H(2)O (8x3.75H(2)O), the two-dimensional phases [[Ni(4)(tpyprz)(3)][Mo(5)O(15)(O(3)PCH(2)CH(2)PO(3))](2)]x23H(2)O (3x23H(2)O) and [[Ni(3)(tpyprz)(2)(H(2)O)(2)](Mo(5)O(15))(Mo(2)O(4)F(2))[O(3)P(CH(2))(3)PO(3)](2)]x8H(2)O (5x8H(2)O), and the three-dimensional structures [[Ni(2)(tpyprz)(H(2)O)(3)]Mo(5)O(15)[O(3)P(CH(2))(3)PO(3))]]xH(2)O (4xH(2)O) and [[Ni(2)(tpyprz)(H(2)O)(2)]Mo(5)O(15) [O(3)P(CH(2))(4)PO(3)]]x2.25H(2)O (7x2.25H(2)O). In the case of methylenediphosphonic acid, the inability of this ligand to tether adjacent pentanuclear clusters precludes the formation of the common molybdophosphonate building block, manifesting in contrast a second structural motif, the trinuclear [(Mo(3)O(8))(x)(O(3)PCH(2)PO(3))(y)] subunit of [[Ni(tpyprz)(H(2)O)(2)](Mo(3)O(8))(2) (O(3)PCH(2)PO(3))(2)] (1) which had been previously observed in the corresponding methylenediphosphonate phases of the copper-molybdophosphonate family. Methylenediphosphonic acid also provides a second phase, [Ni(2)(tpyprz)(2)][Mo(7)O(21)(O(3)PCH(2)PO(3))]x3.5H(2)O (9x5H(2)O), which contains a new heptamolybdate cluster [Mo(7)O(21)(O(3)PCH(2)PO(3))](4)(-) and a cationic linear chain [Ni(tpyprz)](n)(4n+) substructure. The structural chemistry of the nickel-molybdophosphonate series contrasts with that of the corresponding copper-molybdophosphonate materials, reflecting in general the different coordination preferences of Ni(II) and Cu(II). Consequently, while the Cu(II)-organic complex building block of the copper family is invariably the binuclear [Cu(2)(tpyprz)](4+) subunit, the Ni(II) chemistry with tpyprz exhibits a distinct tendency toward catenation to provide [Ni(3)(tpyprz)(2)](6+), [Ni(4)(tpyprz)(3)](8+), and [Ni(tpyprz)](n)(4n+) building blocks as well as the common [Ni(2)(tpyprz)](4+) moiety. This results in a distinct structural chemistry for the nickel(II)-molybdophosphonate series with the exception of the methylenediphosphonate derivative 1 which is isostructural with the corresponding copper compound [[Cu(2)(tpyprz)(H(2)O)(2)](Mo(3)O(8))(2)(O(3)PCH(2)PO(3))] (2). The structural chemistry of the nickel(II) series also reflects variability in the number of attachment sites at the molybdophosphonate clusters, in the extent of aqua ligation to the Ni(II) tpyprz subunit, and in the participation of phosphate oxygen atoms as well as molybdate oxo groups in linking to the nickel sites.  相似文献   

16.
Reactions of the preformed cluster [(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)(MeCN)(2)](ClO(4))(2) (1) with two tetraphosphine ligands, 1,4-N,N,N',N'-tetra(diphenylphosphanylmethyl)benzene diamine (dpppda) and N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine (dppeda), produced two bicyclic clusters {[(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)](2)(L)}(ClO(4))(4) (3: L = dpppda; 4: L = dppeda). Analogous reactions of 1 or [(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)(MeCN)(2)](PF(6))(2) (2) with two N,P mixed ligands, N,N-bi(diphenylphosphanylmethyl)-2-aminopyridine (bdppmapy) and N-diphenylphosphanylmethyl-4-aminopyridine (dppmapy), afforded two monocyclic clusters {[(η(5)-C(5)Me(5))(2)Mo(2)(μ(3)-S)(4)Cu(2)](2)(L)(2)}X(4) (5: L = bdppmapy, X = ClO(4); 6: L = dppmapy, X = PF(6)). Compounds 3-6 were fully characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR spectra, ESI-MS and single-crystal X-ray crystallography. In the tetracations of 3-6, two cubane-like [Mo(2)(μ(3)-S)(4)Cu(2)] cores are linked either by one dpppda or dppeda bridge to form a bicyclic structure or by a pair of bdppmapy or dppmapy bridges to afford a monocyclic structure. The third-order nonlinear optical (NLO) properties of 1 and 3-6 in MeCN were also investigated by femtosecond degenerate four-wave mixing (DFWM) technique with a 50 fs pulse width at 800 nm. Compounds 3-6 exhibited enhanced third-order NLO performances relative to that of 1.  相似文献   

17.
The mechanism of transition-metal tetrahydroborate dimerization was established for the first time on the example of (Ph(3)P)(2)Cu(η(2)-BH(4)) interaction with different proton donors [MeOH, CH(2)FCH(2)OH, CF(3)CH(2)OH, (CF(3))(2)CHOH, (CF(3))(3)CHOH, p-NO(2)C(6)H(4)OH, p-NO(2)C(6)H(4)N═NC(6)H(4)OH, p-NO(2)C(6)H(4)NH(2)] using the combination of experimental (IR, 190-300 K) and quantum-chemical (DFT/M06) methods. The formation of dihydrogen-bonded complexes as the first reaction step was established experimentally. Their structural, electronic, energetic, and spectroscopic features were thoroughly analyzed by means of quantum-chemical calculations. Bifurcate complexes involving both bridging and terminal hydride hydrogen atoms become thermodynamically preferred for strong proton donors. Their formation was found to be a prerequisite for the subsequent proton transfer and dimerization to occur. Reaction kinetics was studied at variable temperature, showing that proton transfer is the rate-determining step. This result is in agreement with the computed potential energy profile of (Ph(3)P)(2)Cu(η(2)-BH(4)) dimerization, yielding [{(Ph(3)P)(2)Cu}(2)(μ,η(4)-BH(4))](+).  相似文献   

18.
 研究了Cu3/2PMo12O40表面改性的骨架镍催化剂上含羰基化合物(正丁醛、异丁醛、丙酮、丁酮和环己酮)及含碳-碳双键化合物(苯、糠醇和1-辛烯)的加氢反应.结果表明,随着骨架镍催化剂上Cu3/2PMo12O40附着量的增加,含羰基化合物的加氢反应速率上升,而含碳-碳双键化合物的加氢反应速率下降.与未改性的骨架镍催化剂相比,当骨架镍催化剂上Cu3/2PMo12O40附着量为6.3%时,羰基的加氢活性提高2倍以上,碳-碳双键的加氢活性下降30%以上.计算了各种化合物在催化剂上的表观活化能.结果表明,Cu3/2PMo12O40表面改性的骨架镍催化剂上,羰基加氢反应的表观活化能降低,而碳-碳双键加氢反应的表现活化能升高.从动力学角度讨论了Cu3/2PMo12O40对骨架镍催化剂的影响.用XPS对骨架镍表面的Cu3/2PMo12O40进行了研究,发现杂多酸盐的Keggin型结构已被破坏,Cu3/2PMo12O40分子中的Cu2+被还原为Cu0,而Mo6+被部分还原为Mo5+和Mo4+;Cu2+和Mo6+价态的变化是由骨架镍表面吸附的活泼氢所引起的.羰基加氢选择性的提高是Cu0和混合价态Mo共同作用的结果.  相似文献   

19.
新型六核双网兜状簇合物[MoS4Cu5Br3(Py)7]的合成与晶体结构   总被引:1,自引:0,他引:1  
以(NH4)2[Mo2S12]?H2O与过量CuBr在吡啶溶液中反应,得到了一个新型六核Mo/Cu/S簇合物[MoS4Cu5Br3(Py)7]。X-射线单晶结构分析表明它属于三斜晶系,空间群为P?C35H35Br3Cu5MoN7S4,Mr=1335.37,a=11.6274(4),b=12.0127(4),c=18.8872(5),a=82.46(2),b=73.25(2),g=62.800(13),V=2246.8(2)?,Z=2,F(000)=1300.0,Dc=1.974g/cm3,?=5.482mm-1,5718个独立可观察点(I>3(I)),最终偏离因子R和Rw分别为0.042和0.048。标题化合物是由2个相似的网兜状MoS3Cu3簇核通过共用MoSCuS平面形成的双网兜状结构,Mo…Cu距离在2.6830(11)~2.741(2)胖洹?  相似文献   

20.
Electrochemical behaviors of selected Dawson-type polytungstates including 2-K10[P2W15Mo2O61box] where the symbol [box] designates a vacant site, alpha2-K7[Fe(OH2)P2W15Mo2O61], alpha2-K8[Cu(OH2)P2W15Mo2O61], alpha1- and alpha2-K8[Cu(OH2)P2W17O61], alpha2-K8[Cu(OH2)P2W13Mo4O61], and alpha2-K8[Cu(OH2)P2W12Mo5O61] were investigated by cyclic voltammetry (CV) coupled with the electrochemical quartz microbalance (EQCM), and the results were completed by atomic force microscopy (AFM) observations of the electrodeposited films. The electrocatalytic abilities of these polyoxometalates (POMs) in the reduction of dioxygen, hydrogen peroxide, and NOx were also assessed by CV and EQCM. It turns out that the remarkable electrocatalysis obtained at the reduction potential of Mo centers within alpha2-K8[Cu(OH2)P2W15Mo2O61], but in a domain where Cu2+ is not deposited, benefits from the assistance of the copper center because such catalysis could not be observed in the absence of Cu2+. EQCM confirms that no copper deposition occurs under the experimental conditions used. Analogous behaviors are encountered in the electrocatalytic reduction of nitrite where assistance by the presence of the Cu2+ center induced the observation of catalysis at the potential location of Mo centers. Finally, the reduction of nitrate is triggered by electrodeposited copper but was remarkably favored by the presence of molybdenum atoms within these polyoxometalates (POMs). All of the results converge to indicate a cooperative effect between the Mo and Cu centers within these POMs. The various results suggest that copper deposition from these POMs should give morphologically different surfaces. AFM studies confirm this expectation, and the observed morphologies and sizes of particles were rationalized by taking into account the role of the POM skeleton and its atomic composition in the electrodeposition process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号