首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very recently Kwon et al. [H.-J. Kwon, J.-A. Seo, H. K. Kim, and Y. H. Hwang, J. Chem. Phys. 134, 014508 (2011)] published an article on the study of dielectric relaxation in trehalose and maltose glasses. They carried out broadband dielectric measurements at very wide range of temperatures covering supercooled liquid as well as glassy state of both saccharides. It is worth to mention that authors have also applied a new method for obtaining anhydrous glasses of trehalose and maltose that enables avoiding their caramelization. Four relaxation processes were identified in dielectric spectra of both saccharides. The slower one was identified as structural relaxation process the next one, not observed by the others, was assigned as Johari-Goldstein (JG) β-relaxation, while the last two secondary modes were of the same nature as found by Kaminski et al. [K. Kaminski, E. Kaminska, P. Wlodarczyk, S. Pawlus, D. Kimla, A. Kasprzycka, M. Paluch, J. Ziolo, W. Szeja, and K. L. Ngai, J. Phys. Chem. B 112, 12816 (2008)]. In this comment we show that the authors mistakenly assigned the slowest relaxation process as structural mode of disaccharides. We have proven that this relaxation process is an effect of formation of thin layer of air or water between plate of capacitor and sample. The same effect can be observed if plates of capacitor are oxidized. Thus, we concluded that their slowest mode is connected to the dc conduction process while their β JG process is primary relaxation of trehalose and maltose.  相似文献   

2.
We would like to show that what has been presented in the paper by Kim, Kim, and Seong [J. Chem. Phys, 135, 034505 (2011)] is nothing but an unnecessarily complicated version of (optimized) random phase approximation.  相似文献   

3.
Molecular beams were used to grow amorphous and crystalline H(2)O films and to dose HCl upon their surface. The adsorption state of HCl on the ice films was probed with infrared spectroscopy. A Zundel continuum is clearly observed for exposures up to the saturation HCl coverage on ice upon which features centered near 2530, 2120, 1760, and 1220 cm(-1) are superimposed. The band centered near 2530 cm(-1) is observed only when the HCl adlayer is in direct contact with amorphous solid water or crystalline ice films at temperatures as low as 20 K. The spectral signature of solid HCl (amorphous or crystalline) was identified only after saturation of the adsorption sites in the first layer or when HCl was deposited onto a rare gas spacer layer between the HCl and ice film. These observations strongly support conclusions from recent electron spectroscopy work that reported ionic dissociation of the first layer HCl adsorbed onto the ice surface is spontaneous.  相似文献   

4.
The reaction of HCl on water ice provides a simple case for understanding dissociation and proton transfer in this non-optimal, incomplete solvation environment, playing a central role in atmospheric chemistry. This reaction has been repeatedly reported as thermally dependent, whereas the theoretical models predict a spontaneous dissociation. We examine the adsorption of HCl on ice at low temperature (50 K and 90 K) via a combination of near-edge X-ray absorption spectroscopy (NEXAFS) at the chlorine L-edge, photoemission (XPS and UPS), and reflection-adsorption infrared spectroscopy (FT-RAIRS). We show the complete dissociation of HCl into Cl(-) and H(+) through 3 hydrogen bonds, predominantly by direct reaction with water (80%) and by self-solvation (20%), in full agreement with the prediction of a barrierless process.  相似文献   

5.
Time-of-flight (TOF) spectra of photofragment H atoms from the photodissociation of water ice films at 193 nm were measured for amorphous and polycrystalline water ice films with and without dosing of hydrogen chloride at 100-145 K. The TOF spectrum is sensitive to the surface morphology of the water ice film because the origin of the H atom is the photodissociation of dimerlike water molecules attached to the ice film surfaces. Adsorption of HCl on a polycrystalline ice film was found to induce formation of disorder regions on the ice film surface at 100-140 K, while the microstructure of the ice surface stayed of polycrystalline at 145 K with adsorption of HCl. The TOF spectra of photofragment Cl atoms from the 157 nm photodissociation of neutral HCl adsorbed on water ice films at 100-140 K were measured. These results suggest partial dissolution of HCl on the ice film surface at 100-140 K.  相似文献   

6.
In addition to revealing the stretch-mode bands of the smallest mixed clusters of HCl and HBr (HX) with water, the ragout-jet FTIR spectra of dense mixed water-acid supersonic jets include bands that result from the interaction of HX with larger water clusters. It is argued here that low jet temperatures prevent the water-cluster-bound HX molecules from becoming sufficiently solvated to induce ionic dissociation. The molecular nature of the HX can be deduced directly from the observed influence of changing from HCl to HBr and from replacing H2O with D2O. Furthermore, the band positions of HX are roughly coincidental with bands assigned to molecular HCl and HBr adsorbed on ice nanocrystal surfaces at temperatures below 100 K. It is also interesting that the HX band positions and widths approximate those of HX bound to the surface of amorphous ice films at <60 K. Though computational results suggest the adsorbed HX molecules observed in the jet expansions are weakly distorted by single coordination with surface dangling-oxygen atoms, on-the-fly trajectories indicate that the cluster skeletons undergo large-amplitude low-frequency vibrations. Local HX solvation, the extent of proton sharing, and the HX vibrational spectra undergo serious modulation on a picosecond time scale.  相似文献   

7.
We report in situ density values of amorphous ice obtained between 0.3 and 1.9 GPa and 144 to 183 K. Starting from high-density amorphous ice made by pressure-amorphizing hexagonal ice at 77 K, samples were heated at a constant pressure until crystallization to high-pressure ices occurred. Densities of amorphous ice were calculated from those of high-pressure ice mixtures and the volume change on crystallization. In the density versus pressure plot a pronounced change of slope occurs at approximately 0.8 GPa, with a slope of 0.21 g cm(-3) GPa(-1) below 0.8 GPa and a slope of 0.10 g cm(-3) GPa(-1) above 0.8 GPa. Both X-ray diffractograms and Raman spectra of recovered samples show that major structural changes occur up to approximately 0.8 GPa, developing towards those of very high-density amorphous ice reported by (T. Loerting, C. Salzmann, I. Kohl, E. Mayer and A. Hallbrucker, Phys. Chem. Chem. Phys., 2001, 3, 5355) and that further increase of pressure has only a minor effect. In addition, the effect of annealing temperature (T(A)) at a given pressure on the structural changes was studied by Raman spectra of recovered samples in the coupled O-H and decoupled O-D stretching band region: at 0.5 GPa structural changes are observed between approximately 100-116 K, at 1.17 GPa between approximately 121-130 K. Further increase of T(A) or of annealing time has no effect, thus indicating that the samples are fully relaxed. We conclude that mainly irreversible structural changes between 0.3 to approximately 0.8 GPa lead to the pronounced increase in density, whereas above approximately 0.8 GPa the density increase is dominated to a large extent by reversible elastic compression. These results seem consistent with simulation studies by (R. Martonàk, D. Donadio and M. Parrinello, J. Chem. Phys., 2005, 122, 134501) where substantial reconstruction of the topology of the hydrogen bonded network and changes in the ring statistics from e.g. mainly six-membered to mainly nine-membered rings were observed on pressure increase up to 0.9 GPa and further pressure increase had little effect.  相似文献   

8.
Adsorption of hydrogen chloride (HCl) on water ice films is studied in the temperature range of 100-140 K by using Cs+ reactive ion scattering (Cs+ RIS), low energy sputtering (LES), and temperature-programmed-desorption mass spectrometry (TPDMS). At 100 K, HCl on ice partially dissociates to hydronium and chloride ions and the undissociated HCl exists in two distinct molecular states (alpha- and beta-states). Upon heating of the ice films, HCl molecules in the alpha-state desorb at 135-150 K, whereas those in the beta-state first become ionized and then desorb via recombinative reaction of ions at 170 K. An adsorption kinetics study reveals that HCl adsorption into the ionized state is slightly favored over adsorption into the molecular states at 100 K, leading to earlier saturation of the ionized state. Between the two molecular states, the beta-state is formed first, and the alpha-state appears only at high HCl coverage. At 140 K, ionic dissociation of HCl is completed. The resulting hydronium ion can migrate into the underlying sublayer to a depth <4 bilayers, suggesting that the migration is assisted by self-diffusion of water molecules near the surface. When HCl is covered by a water overlayer at 100 K, its ionization efficiency is enhanced, but a substantial portion of HCl remains undissociated as molecules or contact ion pairs. The observation suggests that three-dimensional surrounding by water molecules does not guarantee ionic dissociation of HCl. Complete ionization of HCl requires additional thermal energy to separate the hydronium and chloride ions.  相似文献   

9.
The experimental part of this study focuses on FTIR spectroscopy of SO(2) adsorbate on the surface of ice nanoparticles at 128 K, in the 0.5-1 monolayer coverage range. In addition to the infrared spectroscopic features due to molecular SO(2), a structured band is observed at approximately 1030 cm(-1). A similar band was observed in past spectroscopic studies of SO(2) aqueous solutions, and assigned to anionic products of SO(2) ionization. Ab initio normal mode analysis of HSO(3)(-) yielded intense SO stretch bands in the vicinity of the observed "ionic" feature. The relative intensities of the molecular and the anionic bands indicate that 0.3 approximately 0.5 of the adsorbate is ionized. These results are consistent with the previously published data on isotopic exchange in SO(2)-covered ice nanoparticles (Devlin and Buch, J. Chem. Phys., 2007, 127, 091101) which pointed towards substantial SO(2) ionization at low temperatures. Density functional theory modeling of molecular and ionized adsorbate on a crystal ice slab suggests that anion solvation by molecular SO(2) adsorbate facilitates the SO(2) ionization process at the ice surface.  相似文献   

10.
Gollub C  de Vivie-Riedle R 《The Journal of chemical physics》2008,128(16):167101; author reply 167102
Suitable molecules for quantum computing cannot be discussed in terms of anharmonicity and CNOT gates alone. The validity of the approximate approach [M. Zhao and D. Babikov, J. Chem. Phys.126, 204102 (2007)] is limited. Frequencies and anharmonicities cannot be used independent from the molecule. Hermite polynomials with the linear approximation for the dipole moment lead to oversimplified gates with potentially low intensities.  相似文献   

11.
Doltsinis NL  Fink K 《The Journal of chemical physics》2005,122(8):87101; discussion 87102
It is shown that the qualitative differences between high-level ab initio calculations and restricted open-shell Kohn-Sham (ROKS) results for the lowest singlet excited electronic state of formaldimine along a particular isomerization path found by Schautz, Buda, and Filippi [J. Chem. Phys.121, 5836 (2004)] play a minor role in molecular dynamics simulations of photoisomerization at room temperature. In fact, ROKS yields, within its well-known limitations, a good representation of the physically relevant isomerization pathway.  相似文献   

12.
A method of free energy calculation is proposed, which enables to cover a wide range of pressure and temperature. The free energies of proton-disordered hexagonal ice (ice Ih) and liquid water are calculated for the TIP4P [J. Chem. Phys. 79, 926 (1983)] model and the TIP5P [J. Chem. Phys. 112, 8910 (2000)] model. From the calculated free energy curves, we determine the melting point of the proton-disordered hexagonal ice at 0.1 MPa (atmospheric pressure), 50 MPa, 100 MPa, and 200 MPa. The melting temperatures at atmospheric pressure for the TIP4P ice and the TIP5P ice are found to be about T(m)=229 K and T(m)=268 K, respectively. The melting temperatures decrease as the pressure is increased, a feature consistent with the pressure dependence of the melting point for realistic proton-disordered hexagonal ice. We also calculate the thermal expansivity of the model ices. Negative thermal expansivity is observed at the low temperature region for the TIP4P ice, but not for the TIP5P ice at the ambient pressure.  相似文献   

13.
The analysis of the Mn–chalcogen atom (Te, Se, S) bond lengths in Mn-based AII–BVI and AIV–BVI metal chalcogenides (derived from X-ray absorption fine structure studies) as well as in Mn chalcogenides (from X-ray diffraction (XRD)) enabled the author to introduce certain self-corrections into the papers [Chem. Phys. Lett. 283 (1998) 313; Chem. Phys. Lett. 336 (2001) 226]. In particular, it was found that both the tetrahedral- and octahedral covalent radii of manganese depend on a choice of the anion species in the Mn–chalcogen atom bond, and therefore they cannot be considered as the element constants for Mn.  相似文献   

14.
15.
Polarized Raman spectra of the proton ordered phase of ice Ih, i.e., ice XI, were measured above 400 cm(-1) in the range of librational, bending, and stretching vibrations. Vibrational modes in ice XI, of which symmetry is C(2v) (12)(Cmc2(1)), were discussed from the group theoretical point of view. In the librational mode spectra below 1200 cm(-1), several new peaks and clear polarization dependencies were observed. Assignments of the librational modes agree reasonably well with the recent MD calculations by Iwano et al. (J. Phys. Soc. Jpn. 79, 063601 (2010)). In contrast, the spectra for bands above 1200 cm(-1) show no distinct polarization dependencies and the spectra resemble those in ice Ih. In ice XI, however, fine structure composed of several weak peaks appear on the broad bending and the combination band. No direct evidence of the LO-TO splitting of the ν(3) anti-symmetric stretching mode was obtained. It is contrary to the case of the translational modes Abe and Shigenari (J. Chem. Phys. 134, 104506 (2011)). Present results suggest that the influence of the proton ordering in ice XI is weaker than the effect of inter- and intra-molecular couplings in the stretching vibrations of ice Ih.  相似文献   

16.
Homogeneous ice nucleation from supercooled water was studied in the temperature range of 220-240 K through combining the forward flux sampling method (Allen et al., J. Chem. Phys., 2006, 124, 024102) with molecular dynamics simulations (FFS/MD), based on a recently developed coarse-grained water model (mW) (Molinero et al., J. Phys. Chem. B, 2009, 113, 4008). The calculated ice nucleation rates display a strong temperature dependence, ranging from 2.148 ± 0.635 × 10(25) m(-3) s(-1) at 220 K to 1.672 ± 0.970 × 10(-7) m(-3) s(-1) at 240 K. These rates can be fitted according to the classical nucleation theory, yielding an estimate of the effective ice-water interface energy γ(ls) of 31.01 ± 0.21 mJ m(-2) for the mW water model. Compared to experiments, our calculation underestimates the homogeneous ice nucleation rate by a few orders of magnitude. Possible reasons for the discrepancy are discussed. The nucleating ice embryo contains both cubic ice Ic and hexagonal ice Ih, with the fraction of each structure being roughly 50% when the critical size is reached. In particular, a novel defect structure containing nearly five-fold twin boundaries is identified in the ice clusters formed during nucleation. The way such defect structure is formed is found to be different from mechanisms proposed for the formation of the same defect in metallic nanoparticles and thin film. The quasi five-fold twin boundary structure found here is expected to occur in the crystallization of a wide range of materials with the diamond cubic structure, including ice.  相似文献   

17.
Distelrath V  Boesl U 《Faraday discussions》2000,(115):161-74; discussion 175-204
Anion-ZEKE-photoelectron spectra of ClO-, OClO-, ClOO- and the van der Waals cluster ArCl- have been measured. Refined or new values for the electron affinity of ClO, OClO and ClOO have been found. The peak positions in these spectra are in very good agreement with former ClO- and OClO- anion-photoelectron spectra (K. M. Gilles, M. L. Polak and W. C. Lineberger, J. Chem. Phys., 1992, 96, 8012) and a recent ArCl- anion-ZEKE spectrum (T. Lenzer, I. Yourshaw, M. Furlanetto, G. Reiser and D. Neumark, J. Chem. Phys., 1992, 110, 9578). The higher resolution of our anion-ZEKE-photoelectron spectrum of OClO- led to a refined assignment of the corresponding anion-photoelectron spectrum. In addition, a strong difference in the relative intensities of the vibrational peaks has been found in the anion-ZEKE-spectrum of OClO- in comparison with the anion-photoelectron spectrum. For the first time, mass selective spectroscopic information has been obtained for ClOO. The strong similarity to the ArCl- spectrum indicates a weakly bound van der Waals cluster Cl.O2. Binding energies of the anion, neutral ground and neutral excited state could be deduced. These are in good agreement with the electron affinities of Cl and ClOO, but differ from theoretical values (K. A. Peterson and H. J. Werner, J. Chem. Phys., 1992, 96, 8948) by a factor of 4.5 and from thermochemically determined values (J. M. Nicovich, K. D. Kreutter, C. J. Shackelford and P. H. Wine, Chem. Phys. Lett., 1991, 179, 367 and S. Baer, H. Hippler, R. Rahn, M. Siefke, N. Seitzinger and J. Troe, J. Chem. Phys., 1991, 95, 6463) by a factor of 9.  相似文献   

18.
Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T相似文献   

19.
Buchner R  Rudolph WW  Hefter GT 《The Journal of chemical physics》2006,124(24):247101; author reply 247102
The "dynamic exchange" model of ion association proposed by Watanabe and Hamaguchi, [J. Chem. Phys.123, 034508 (2005)] for aqueous solutions of MgSO4 is shown to be inconsistent with the extensive information available from Raman, relaxation, and thermodynamic studies, all of which can be explained by the Eigen equilibrium model.  相似文献   

20.
Filatov M 《The Journal of chemical physics》2006,125(10):107101; discussion 107102
The connection between the exact quasirelativistic approach developed in the title reference [W. Kutzelnigg and W. Liu, J. Chem. Phys. 123, 241102 (2005)] and the method of elimination of the small component in matrix form developed previously by Dyall is explicitly worked out. An equation that links Hermitian and non-Hermitian formulations of the exact quasirelativistic theory is derived. Besides establishing a kinship between the existing formulations, the proposed equation can be employed for the derivation of new formulations of the exact quasirelativistic theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号