首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Segregated carbon on the Fe(100) surface has been studied by means of X-rayand ultraviolet photoelectron (XPS, UPS), Auger electron (AES) and electron energy loss spectroscopy (ELS). For comparison, the surfaces of polycrystalline graphite and of iron carbides stabilized by chromium or manganese additions have been investigated. On the iron surface, carbon exists as a chemisorbed state or graphitic multilayer. The two states exhibit different energy positions in XPS, and are different in energy positions and lineshapes in AES and ELS. During the transition of graphitic carbon to chemisorbed carbon on Fe(100) a novel coverage-dependent Auger feature is reported. The spectra of graphitic carbon on the iron surface always coincide with those of solid graphite. The carbon Auger transitions of chemisorbed carbon and of iron carbides exhibit very similar lineshapes, but the energy positions of both states differ in AES as well as XPS.  相似文献   

2.
The effect of the oxygen plasma treatment on the electronic states of multi-wall carbon nanotubes (MWCNTs) is analyzed by X-ray photoemission measurements (XPS) and UPS, both using synchrotron radiation. It is found that the plasma treatment effectively grafts oxygen at the CNT-surface. Thereafter, the interaction between evaporated Pd and pristine or oxygen plasma-treated MWCNTs is investigated. Pd is found to nucleate at defective sites, whether initially present or introduced by oxygen plasma treatment. The plasma treatment induced a uniform dispersion of Pd clusters at the CNT-surface. The absence of additional features in the Pd 3d and C 1s core levels spectra testifies that no Pd-C bond is formed. The shift of the Pd 3d core level towards high-binding energy for the smallest clusters is attributed to the Coulomb energy of the charged final state.  相似文献   

3.
Hydrogen shallow donors in sol-gel-derived pristine and rare-earth Y-doped ZnO nanoparticles have been investigated by electron paramagnetic resonance (EPR) and high-resolution 1H nuclear magnetic resonance (NMR). It is shown by EPR measurements that the energy level of the hydrogen shallow donors in the Y-doped ZnO is much deeper (E ~ 174 meV) than in the pristine ZnO (E ~ 75 meV). The temperature-dependent 1H NMR chemical shift and linewidth measurements of the pristine and the Y-doped ZnO systems indicated that Y-doping effectively modifies the lattice environment and hinders the hydrogen motions in the ZnO nanoparticles.  相似文献   

4.
The Raman signal of hydrogenated and deuterated amorphous carbon-films, respectively, is dominated by the resonance Raman spectrum of clusters. Loss of H and D by thermal annealing sharpens and shifts Raman bands analogous to the case of annealing of amorphous carbon and ion bombarded graphite. H 2 + and D 2 + bombarded graphite displays a weak signal assigned to diamond clusters.  相似文献   

5.
Diamond-like carbon (DLC) films were deposited on Si (1 0 0) substrate using a low energy (219 J) repetitive (1 Hz) miniature plasma focus device. DLC thin film samples were deposited using 10, 20, 50, 100 and 200 focus shots with hydrogen as filling gas at 0.25 mbar. The deposited samples were analyzed by XRD, Raman Spectroscopy, SEM and XPS. XRD results exhibited the diffraction peaks related to SiO2, carbon and SiC. Raman studies verified the formation amorphous carbon with D and G peaks. Corresponding variation in the line width (FWHM) of the D and G positions along with change in intensity ratio (ID/IG) in DLC films was investigated as a function of number of deposition shots. XPS confirmed the formation sp2 (graphite like) and sp3 (diamond like) carbon. The cross-sectional SEM images establish the 220 W repetitive miniature plasma focus device as the high deposition rate facility for DLC with average deposition rate of about 250 nm/min.  相似文献   

6.
《Applied Surface Science》1987,28(3):291-301
Angular resolved X-ray photoelectron spectroscopy (XPS) and time-of-flight direct recoil (DR) spectrometry are used to characterize the surface changes in polyimide iso-indroquinazolinedione (PIQ®: Hitachi Chem. Co.) induced by 4 keV Ar+ bombardment. Deconvolution of the XPS data along with a stoichiometry of CH2.2 ± 0.2 as determined from DR intensities indicate the presence of an uppermost hydrocarbon layer on the initial surface. Upon Ar+ bombardment the H, N, and O concentrations decrease and the surface layer carbon concentration increases to > 94 at %. This carbonaceous layer exhibits C1s chemical shifts and line shapes that are similar to those of an ion bombarded graphite surface, along with an enhanced electrical conductivity.  相似文献   

7.
XPS and UPS investigations of ultrathin films of In/Ag and Ag/In, deposited onto the W(1 1 0) surface in the ultrahigh vacuum conditions have been performed. Indium and silver films were formed by “in-situ” evaporation on W(1 1 0) substrate. XPS and UPS studies have been performed by means of SCIENTA ESCA200 instrument. The changes of In4d core-level and Ag4d valence band emissions with increasing Ag and In coverage were monitored to observe the energy shift and shape of the spin-orbit doublet of In4d and Ag4d lines in the Ag/In/W and In/Ag/W systems. UPS (HeI and HeII) measurements were supported by XPS AlKα measurements of In3d and W4p levels, as well as by investigations of Ag3d levels. XPS and UPS data allowed to evaluate the coverage and make conclusions concerning intermixing and surface alloying in the In/Ag/W and Ag/In/W systems. W(1 1 0) substrate can be cleaned after each deposition by thermal desorption and no alloying in the In/W and Ag/W systems is observed.  相似文献   

8.
虞心南  张青哲  谢侃  齐上雪  康瑾  林彰达 《物理学报》1983,32(10):1333-1338
本文用UPS,XPS研究了贮氢材料MlNi5(Ml=La,Ce,Pr,Nd)的CO,O2和H2O的中毒,在UPS谱中,我们观察到在EF以下峰α(0.3eV)和峰b(1.2eV)强度随中毒气体暴露量增加有显著变化,并向低动能端位移,逐渐形成肩峰,与此同时,峰c(6eV)和峰d(9.5eV)的强度随暴露量增加而增加,并有能量位移,配合XPS分析,分别确定相应的化学态。氧中毒后的MlNi5,经300℃加氢还原,从UPS谱可以看到峰α,b强度增加;H2O和CO中毒后,在超高真空条件下,分别经300℃加热处理,和Ar+剥离方法,均获得类似的效果,XPS分析进一步证实了这些结果。实验给出了贮氢材料MlNi5中过渡金属镍的d电子与气体自由分子轨道间电荷转移的信息,为在实际应用中认识此类贮氢合金的表面催化中毒和再生提供了依据。 关键词:  相似文献   

9.
From the initial uptake of atomic hydrogen at room temperature the active sites on cleaved and sputtered InP(110)-surfaces were determined using high resolution electron energy loss spectroscopy (HREELS), low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS, XAES). It is found that the In-H stretching mode intensity is dominant for the cleavage surface, which is known to be P-rich due to surface relaxation. For the Ar+-ion bombarded surface (In-rich) the P–H stretching mode is very strong if compared to the corresponding In-H mode. From these observations it may be deduced that both, the chemical bonding situation and the geometric configuration, are reflected in our HREELS-results. For the cleavage surface the initial adsorption for atomic hydrogen is interpreted in the framework of existing models for the (1×1) relaxation in terms of its chemical bonding configuration. The sputtered surface is assumed to be amorphous consisting of In-clusters and predominantly broken P-bonds, which are passivated after hydrogen exposure. For high hydrogen exposures, a strong decrease of the phosphor hydride lines may be interpreted as phosphine desorption.  相似文献   

10.
\valunit*{400}{\eV} or ) nitrogen ion beam was used to bombard films to synthesize carbon nitride films. The bombarded films were examined by Raman and X-ray photoelectron spectroscopy (XPS) measurements. The experimental results showed that the destroyed carbon species chemically combined with nitrogen ions to form stable carbon nitride. An appropriate beam energy (possibly ) was proposed in this method. Received: 1 July 1996/Accepted: 27 November 1996  相似文献   

11.
The electronic properties of Ar-ion and electron bombarded single-crystal surfaces of LiNbO3 have been investigated at room temperature by ultraviolet photoelectron spectroscopy (UPS) and x-ray excited photoelectron spectroscopy (XPS). In crystals reduced in this way, the loss of oxygen is accompanied with a loss of lithium and the creation of Nb4+ and Nb3+ ions. The relative concentrations of the various defects have been determined from their corresponding XPS core line spectra. When surface defects are produced an emission in the region of the bulk band gap appears. This gap emission is identified as arising from Nb 4d electrons due to the reduction of Nb5+ ions to Nb4+ and Nb3+ ions. The different behaviour of the gap emission upon surface treatment in the UPS and the XPS spectra is discussed.  相似文献   

12.
The effects of ion-beam bombardment on the physical and chemical properties of poly(allyl diglycol carbonate) (CR-39) polymer have been investigated. CR-39 samples were bombarded with 320 keV Ar and 130 keV He ions at fluences ranging from 1 × 1013 to 2 × 1016 ions/cm2. The nature and extent of radiation damage induced were studied by UV–VIS spectrometry, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, as well as Vickers' hardness measurements. In addition, the effect of ion fluence on the wetting properties of ion-beam bombarded CR-39 polymer was determined by measuring the contact angle for distilled water. UV–VIS spectra of bombarded samples reveal that the optical band gap decreases with increasing ion fluence for both Ar and He ions. In the FTIR spectra, changes in the intensity of the bands on irradiation relative to pristine samples occurred with the appearance of new bands. XRD analyses showed that the degree of ordering of the CR-39 polymer is dependent on the ion fluence. Changes of surface layer composition and an increase in the number of carbonaceous clusters produced important change in the energy gap and the surface wettability. The surface hardness increased from 10.54 MPa for pristine samples to 28.98 and 23.35 MPa for samples bombarded with Ar and He ions at the highest fluence, respectively.  相似文献   

13.
Surface modification of Poly (allyl diglycol carbonate) (PADC) is induced by 150 keV Ag ions of different fluences. The pristine as well as bombarded samples were investigated by UV–Vis spectroscopy, Fourier transform-infrared analysis (FTIR) and micro-hardness tester. The variations of wettability and surface free energy were determined by the contact angle measurements. The obtained results showed that ion beam bombardment induced increase in the absorption spectra of the UV–Vis with increase of ion fluence as well. The direct and indirect optical band gap decreased from 4.2 to 3.6 eV for pristine sample to 3.2 and 2.5 eV for those bombarded with Ag ion beam at the highest fluence, respectively. Changes in chemical properties were observed by Fourier transform infrared spectroscopy. Increase in the wettability, surface free energy and work of adhesion with increase the ion fluence were observed. Ion bombardment inducing increasing in a micro-hardness surface due to the high carbon surface concentration and cross-linking effects in the polymeric chains. The bombarded PADC surfaces may find special applications to the field of the micro-electronic devices and printing process.  相似文献   

14.
X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and Auger electron spectroscopy (AES) have been used to study the adsorption of methanol on ZnO powder. The He(II) spectrum of electron-beam-eleaned ZnO was similar to that reported by Rubloff .1 for the ZnO (11̄ 0 0) surface. The spectrum of methanol condensed at ?150°C matched that of gas-phase methanol. At low methanol coverages, difference spectra showed no increase in the methanol O(2p) lone pair binding energy reported to be indicative of chemisorption. A residual carbon and oxygen surface component on the ZnO powder may have prevented chemisorption. XPS measurements were found to be more useful in observing this layer than was AES. A decrease in the ZnO valence band intensity near the valence band maximum indicated that a strong interaction with the substrate had occurred.In this system the valence bands of the adsorbate and substrate overlap, and the true position of the methanol O(2p) lone pair orbital is obscured by the effects of the substrate band modification. Also, for insulators or semiconductors, a change in the measured position of the valence band maximum relative to the Fermi level may occur upon adsorption. Since the Zn(3d) core level should not be affected, it was used as an energy reference for the present work. The problems of energy referencing in UPS studies of adsorption on semiconductors are discussed.  相似文献   

15.
The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot. The possible reason for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating. For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film, a cluster model with a series of graphite (0001) basal surfaces has been presented, and the theoretical calculations have been performed to investigate work functions of graphite (0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.  相似文献   

16.
采用氢等离子体,实现了碳纳米管向金刚石的结构相变,并实现了金刚石的高密度成核,有效成核密度可达10\+\{11\}/cm\+2以上,处于目前金刚石成核密度的最高行列,为制备优质的金刚石薄膜提供了保证.高分辨透射电镜、x射线衍射和拉曼光谱都证实了金刚石的形成.同时,对纳米金刚石晶粒的生成机理进行了初步探讨. 关键词: 等离子体 碳纳米管 纳米金刚石 结构相变  相似文献   

17.
X-ray diffractometry (XRD), X-ray photoelectron spectrometry (XPS), Auger electron spectrometry (AES) and transmission electron microscopy (TEM) were used to investigate the structure and surface layers properties of nanocomposites produced by the mechanical activation (ball milling) of elemental magnesium with carbon materials (amorphous carbon and graphite). Amorphous carbon was synthesized by electric discharge treatment in kerosene. It was shown that ball milling, the allotropic form of carbon materials, and features of hydrogenation have a considerable effect on the structure, surface layer properties, and hydrogen adsorption of a formed composition. XPS and Auger spectroscopy revealed the surface layer of the composite particles to be enriched with carbon. In addition, there were oxide layers on their surfaces due to the particles’ interaction with the environment.  相似文献   

18.
Photolysis of perfluoroazooctane with diamond-like carbon (DLC) films led to the surface modification to introduce perfluorooctyl functional groups, confirmed by means of FT-IR, XPS, Raman and TOF-SIMS measurements. The DLC films modified with fluorine moieties showed reduction of the surface energy evaluated by contact angle to water, as compared with pristine DLC film. The contact angle of chemically modified DLC film is 105°, comparable to that of polytetrafluoroethylene (PTFE). By monitoring with XPS, we found that the results on the value of fluorine/carbon ratio of fluorinated DLC films depending on irradiation time are consistent with those of contact angle. Chemical modification of DLC films with perfluorooctyl functionalities also led to improvement of their frictional properties. The friction coefficient of the modified film is 0.05 under vacuum condition, whereas that of the pristine film shows very high value (>1).  相似文献   

19.
The binding energy of the C 1s-level of clean pyrolytic graphite and amorphous carbon has been measured by means of the excitation-curve technique. Values ofE C 1s B =284.31±0.2 eV for graphite and amorphous carbon have been found.  相似文献   

20.
Based on UPS and XPS investigations, it is concluded that a monohydride phase forms at first on the Si(1 1 1)7 × 7 surface. Upon further hydrogen dosing at room temperature, a dihydride phase develops and superposes to the previously formed monohydride phase. The dihydride phase desorbs completely around 250°C and the monohydride phase at about 550°C. A pure dihydride phase obtained by H adsorption cannot be observed on a silicon surface. Silane or disilane adsorption at room temperature exhibits the characteristic features of the dihydride phase without the associated monohydride phase. The obtained phase desorbs at the same temperature as the H induced dihydride phase. That is to our mind the only possibility to obtain a pure dihydride phase.

For germanium in careful conditions we observe only a monohydride phase which desorbs at 150°C. For high hydrogen exposures, we obtain a new phase but XPS measurements indicate oxygen contamination. This place desorbs at 225°C and allows clear distinction between H adsorption and contamination. It is concluded that Ge and Si surfaces have different reactivities for hydrogen adsorption. These conclusions are extended to all Ge and Si surfaces either crystallized or amorphous.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号