首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the synthesis of cetyltrimethylammonium bromide (CTAB) assisted seed mediated growth of highly pure and monodispersed quasispherical gold nanoparticles (QAuNPs) and their self-assembly on the silica/glass substrates. The seed-mediated growth approach was modified to prepare size-tunable monodispersed QAuNPs with sizes ranging from 20 to 150 nm. The larger, more uniform seeds and lower CTAB concentration resulted in the formation of relatively large QAuNPs with improved monodispersity (relative standard deviation (RSD) of ~5-8%) and high purity in their shapes. In addition, CATB-capped QAuNPs can be spontaneously assembled into closely packed and highly aligned superstructures with well-defined mutillayers (two to six layers) on silica substrates. Furthermore, CATB-capped QAuNPs can easily construct density-controllable QAuNP chips by electrostatic self-assembly, showing their promising applications for single-nanoparticle plasmonic sensors.  相似文献   

2.
CeO2 nanocubes (and nanorods) enclosed by six {200} planes with controlled sizes have been prepared through a facile one-pot method. The nanocubes have a strong tendency to assemble into 2D and 3D arrays with regular patterns on a substrate, which is probably driven by the dipole-dipole interaction of polar {200} planes. The possible formation mechanism of the nanocubes has been put forward as the oriented aggregation mediated precursor growth. It is possible to use the synthesized nanocubes as building blocks to achieve {200}-perfect-oriented monolayers or thickness-controlled films and to apply the preparative method in the incorporation of heterogeneous atoms or nanoparticles for semiconductor doping or heterogeneous nanostructures.  相似文献   

3.
Monodisperse FePt nanocubes are synthesized at 205 degrees C by controlling decomposition of Fe(CO)5 and reduction of Pt(acac)2 and addition sequence of oleic acid and oleylamine. Different from the assembly of the sphere-like FePt nanoparticles, which shows 3D random structure orientation, self-assembly of the FePt nanocubes leads to a superlattice array with each FePt cube exhibiting (100) texture. Thermal annealing converts the chemically disordered fcc FePt to chemically ordered fct FePt, and the annealed assembly shows a strong (001) texture in the directions both parallel and perpendicular to the substrate. This shape-controlled synthesis and self-assembly offers a promising approach to fabrication of magnetically aligned FePt nanocrystal arrays for high density information storage and high performance permanent magnet applications.  相似文献   

4.
Gold nanocubes, octahedra, and rhombic dodecahedra with roughly two sets of particle sizes have been successfully synthesized via a seed-mediated growth approach. All six samples were analyzed for comparative surface-enhanced Raman scattering (SERS) activity. All of these Au nanostructures were found to yield strong enhancement at a thiophenol concentration of 10(-7) M and are excellent SERS substrates. Rhombic dodecahedra with a rhombus edge length of 32 nm showed significantly better enhancement than the other samples and can reach a detection limit of 10(-8) M. Simulations of the binding energies of thiophenol on the different faces of gold and electric near-field intensities of these nanocrystals have been performed to evaluate the experimental results. Superior SERS activity of these nanocrystals can be expected toward the detection of many other molecules.  相似文献   

5.
Uniform colloidal polypyrrole particles ranging from 17 to 59 nm in diameter were prepared by the oxidation of pyrrole with sodium persulfate in the presence of the nonionic Rhodasurf TB970 polymeric stabilizer and 4-ethyl benzenesulfonic acid. The adhesion of these particles on glass beads was studied as a function of the pH using the packed column technique. Polypyrrole was found to deposit on glass only at pH values below its isoelectric point (i.e.p.), forming a monolayer. The entire amount of the adhered polypyrrole could be rapidly removed by rinsing the column with 1×10-2 mol dm-3 NaOH solution. Received: 3 April 1998 Accepted: 27 April 1998  相似文献   

6.
The successful one-step preparation method of monodisperse hybrid silica particles was studied using organosilane chemicals in aqueous solution. In general, almost all of the hybrid silica materials were made by a complex method where organic materials were coated on the surface of silica substrate via chemical reaction. However, our novel method can be applied to prepare colloidal hybrid particles without using substrate material. This method has three advantages: (i) this simple method gives the opportunity to prepare hybrid particles with high monodispersity through the self-hydrolysis of various organosilane monomers in aqueous solution, (ii) this efficient method can be applied to load lots of organic functional groups on the surface of silica particles through a one-step preparation method using only organosilane, and (iii) this effective method can be used to control the particle size of the product by changing the experimental conditions such as the concentration of the precursor or the reaction temperature. Detailed characterization of the hybrid particles by scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA) was performed to elucidate the morphologies and properties of the hybrid silica particles.  相似文献   

7.
The procedures and the backgrounds for the formation of monodispersed colloidal particles are reviewed, along with the personal view of the author's own, by classifying a wide variety of the systems. This article consists of the size distribution control for uniform colloidal systems with typical examples, including homogeneous and heterogeneous systems, and the crystal habit control of monodispersed particles.  相似文献   

8.
Novel cubic nanocapsules consisting of metallic iron core and amorphous silica shell were fabricated through a simple chemical reduction route followed by a Stöber process. Thus-prepared Fe@SiO2 nanocubes were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS), Fourier transform infrared spectrometer (FTIR), thermogravimetry-differential thermal analysis (TG-DTA), vibrating sample magnetometer (VSM) and scalar network analysis (SNA). Comparing with that of pure iron counterparts, silica-coated iron nanocubes exhibited improved magnetic properties, oxidation resistance and microwave absorption performance. A reflection loss (RL) exceeding ?12 dB was obtained in the frequency range of 8–14 GHz for an absorber thickness of 2 mm, with an optimal RL of ?18.2 dB at 9 GHz. Mechanism of the improved microwave absorption properties of the Fe@SiO2 composite was discussed based on their magnetic properties and electromagnetic theory.  相似文献   

9.
This paper describes a strategy that combines physical templating and capillary forces to assemble monodispersed spherical colloids into uniform aggregates with well-controlled sizes, shapes, and structures. When an aqueous dispersion of colloidal particles was allowed to dewet from a solid surface that had been patterned with appropriate relief structures, the particles were trapped by the recessed regions and assembled into aggregates whose structures were determined by the geometric confinement provided by the templates. We have demonstrated the capability and feasibility of this approach by assembling polystyrene beads and silica colloids (> or =150 nm in diameter) into complex aggregates that include polygonal or polyhedral clusters, linear or zigzag chains, and circular rings. We have also been able to generate hybrid aggregates in the shape of HF or H2O molecules that are composed of polymer beads having different diameters, polymer beads labeled with different organic dyes, and a combination of polymeric and inorganic beads. These colloidal aggregates can serve as a useful model system to investigate the hydrodynamic and optical scattering properties of colloidal particles having nonspherical morphologies. They should also find use as the building blocks to generate hierarchically self-assembled systems that may exhibit interesting properties highly valuable to areas ranging from photonics to condensed matter physics.  相似文献   

10.
 To understand the properties of colloidal dispersions it is often vital to prepare model materials with particles that have a small polydispersity in order to make experimental tests of theories or models. However few preparations have been developed that yield anisotropic particles with a narrow size distribution and precise shape. In this paper the preparation of a dispersion of charge stabilized, tungstic acid particles is described. The particles are rectangular and have a length of 7.0 μm, a width of 2.8 μm and a thickness of 0.2 μm. The polydispersity is 8% in length and 10% in width, making it one of the most monodisperse dispersions of anisotropic particles. Each particle is monocrystalline and the crystal orientation is fixed with respect to the particle morphology. Some interesting behavior is observed: these particles aggregate perpendicular and parallel to each other to give flat, ordered flocs when the stability is reduced. Received: 22 January 1998 Accepted: 4 February 1998  相似文献   

11.
12.
The reducing property of an organically soluble conducting polymer (poly(o-methoxyaniline), POMA) is used to prepare monodisperse, size-controlled, highly populated, and highly stable silver nanoparticles in an organic medium through an interfacial redox process with an aqueous AgNO3 solution. The transition of emeraldine base (EB) to the pernigraniline base (PB) form of POMA occurs during nanoparticle formation, and the nitrogen atoms of POMA(PB) stabilize Ag nanoparticles by coordination to the adsorbed Ag(+) on the nanoparticle surface. The conductivity of the nanocomposite is on the order of 10(-11) S/cm, indicating that no doping of POMA occurs under the preparation conditions. The nanoparticles are free of excess oxidant and external stabilizer particles. The POMA (EB) concentration tailors the size of nanoparticles, and at its higher concentration (0.01% POMA with 0.01 N AgNO3), very dense Ag nanoparticles (6 x 10(15) particles/m(2)) of almost uniform size and shape are produced. The rate constant and Avrami exponent values of the nanoparticle formation are measured from the time-dependent UV-vis spectra using the Avrami equation. The Avrami exponent (n) values are close to 1, indicating 2D athermal nucleation with the circular shape of the nuclei having diffusion-controlled growth. The rate constant values are almost independent of AgNO3 concentration but are strongly dependent on POMA concentration. The higher rate constant with increasing POMA(EB) concentration has been attributed for the lowering of nanoparticle size due to increased nucleation density.  相似文献   

13.
We have successfully prepared monodispersed thermoresponsive core-shell hydrogel microspheres with a mean diameter of 200-400 nm with poly(N-isopropylacrylamide-co-styrene) [P(NIPAM-co-St)] cores and poly(N-isopropylacrylamide) (PNIPAM) shells. The submicrometer-sized monodispersed P(NIPAM-co-St) core seeds were prepared by using a surfactant-free emulsion polymerization method, and the PNIPAM shell layers were fabricated onto the core seeds by using a seed polymerization method. The particle size, morphology and monodispersity, and thermoresponsive characteristics of the prepared microspheres were experimentally studied. In the preparation of P(NIPAM-co-St) seeds, with increasing the initiator dosage, the mean diameters and the dispersal coefficients were almost at the same levels at first; however, when the initiator dosage increased further to a critical amount, the mean diameters decreased drastically and the monodispersity became worse significantly. With increasing the stirring rate, the particle diameter decreased, and when the stirring rate was larger than 600 rpm, the monodispersity became worse obviously. With increasing the phase ratio, the mean diameter became larger simply, and the monodispersity became worse first and then became better again. With increasing the reaction time, the particle sizes nearly did not change, while the monodispersity gradually became better slightly. For the core-shell microspheres, with increasing the NIPAM dosage in the preparation of the PNIPAM shell layers, the mean diameters became larger simply, the monodispersity became better, and the thermoresponsive swelling ratio of the hydrodynamic diameters increased.  相似文献   

14.
Preparation and self-assembly of carboxylic acid-functionalized silica   总被引:1,自引:0,他引:1  
A simple method for the fabrication of silica nanoparticle film based on the covalent-bonding interaction between carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) and amino-terminated silicon wafer was developed. Prior to assembly, silica nanoparticles with an average diameter 80 nm were prepared using the St?ber method, amino-functionalized silica nanoparticles (SiO(2)-NH(2)) were prepared by a silanization with 3-aminopropyltriethoxysilane (APTES), while carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) were prepared by a ring opening linker elongation reaction of the amine functions with succinic anhydride, at the same time, amino-terminated silicon wafer (Si-NH(2)) was obtained by self-assembling 3-aminopropyltriethoxysilane, then one layer relative close-packed carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) was arranged on silicon wafer through amidation reaction under DCC coupling agent.  相似文献   

15.
Highly oriented zinc oxide-surfactant hybrid multilayers were electrochemically self-assembled on silicon substrates from Zn(NO3)2 solutions containing extremely low concentration of sodium dodecyl sulfate (SDS). The X-ray diffraction results showed that the structure of the hybrid film is sensitive to the concentration of SDS. When the concentration of SDS is below a critical value, 0.002 wt %, a surfactant bilayer is adsorbed on the silicon surface, together with electrodeposited crystalline ZnO particles. Above this concentration, lamellar ZnO-surfactant hybrid films are formed, the period of which decreases from 31.7 +/- 0.2 A at 0.003 wt % to 27.5 +/- 0.2 A at 0.005 wt %, another critical concentration. It then increases monotonically and reaches its maximum of 33.0 +/- 0.2 A above 0.05 wt %. The results implied that the kinetics of the electrochemical self-assembly depends on the relative speed of the reduction of the zinc ions and the aggregation of the surfactant. The two processes occur cooperatively at the electrolyte-electrode interface to form the hybrid films.  相似文献   

16.
Monodispersed rifampicin (RFP)-loaded poly(lactide-co-glycolide) (PLGA) microspheres were prepared by a solvent evaporation method. In order to control the sizes of the microspheres, a membrane emulsification technique using Shirasu porous glass (SPG) membranes was applied. RFP/PLGA microspheres with the average diameters of 1.3, 2.2, 5.2, and 9.0 microm were obtained. They were relatively monodisperse and the values of the coefficient of variation (CV) for the size distributions of the microspheres were in the range between 7.0 and 16.0%. The loading efficiency of RFP was in the range between 50.3 and 67.4% independent of the microsphere size. The release ratio of RFP from RFP/PLGA microspheres was measured in pH 7.4 PBS at 37 degrees C. From RFP/PLGA microspheres with average diameters of 1.3 and 2.2 microm, almost 60% of RFP loaded in the microspheres was released in the initial day and the release was terminated almost within 10 days. On the other hand, from those with average diameters of 5.2, and 9.0 microm, the release of RFP was observed even 20 days after the release started.  相似文献   

17.
In the present study, a facile one-pot synthetic route, utilizing a strong polar organic solvent, N-methyl 2-pyrrolidone (NMP), is demonstrated to obtain highly monodispersed ferrite nanocrystals. The equimolar mixture of oleic acid, C(17)H(33)COOH (R-COOH), and oleylamine, C(18)H(35)NH(2) (R'-NH(2)), was used to coat the magnetic nanocrystals. Structural and magnetic properties of the ferrite nanocrystals were studied by a multitechnique approach including X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), and M?ssbauer spectroscopy. FTIR spectral analysis indicates oleylamine helps in deprotonation of oleic acid, resulting in the formation of an acid-base complex, R-COOˉ:NH(3)(+)-R', which acts as binary capping agent. Structural and coordination differences of iron were studied by XPS and M?ssbauer spectral analysis. XPS analysis was carried out to examine the oxidation state of iron ions in iron oxide nanocrystals. The presence of a magnetically dead layer (~0.38 and ~0.67 nm) and a nonmagnetic organic coating (~2.3 and ~1.7 nm) may substantially reduce the saturation magnetization values for CoFe(2)O(4) and Fe(3)O(4) nanocrystals, respectively. The energy barrier distribution function of magnetic anisotropy was derived from the temperature dependent decay of magnetization. A very narrow energy barrier distribution elucidates that the ferrite nanocrystals obtained in this study are highly monodispersed.  相似文献   

18.
In this work, a template-free synthetic approach for generating single-crystalline hollow nanostructures has been described. Using the small optical band-gap cuprous oxide Cu(2)O as a model case, we demonstrate that, instead of normally known spherical aggregates, primary nanocrystalline particles can first self-aggregate into porous organized solids with a well-defined polyhedral shape according to the oriented attachment mechanism, during which chemical conversion can also be introduced. In contrast to the spherical aggregates, where the nanocrystallites are randomly joined together, the Cu(2)O nanocrystallites in the present case are well organized, maintaining a definite geometric shape and a global crystal symmetry. Due to the presence of intercrystallite space, hollowing and chemical conversion can also be carried out in order to create central space and change the chemical phase of nanostructured polyhedrons. It has been revealed that Ostwald ripening plays a key role in the solid evacuation process. Using this synthetic strategy, we have successfully prepared single-crystal-like Cu(2)O nanocubes and polycrystalline Cu nanocubes with hollow interiors. For the first time, we demonstrate that nanostructured polyhedrons of functional materials with desired interiors can be synthesized in solution via a combination of oriented attachment and Ostwald ripening processes.  相似文献   

19.
Well-defined single-crystalline PbS nano- and microstructures including dendrites, multipods, truncated nanocubes, and nanocubes were synthesized in high yield by a simple solution route. Novel star-shaped PbS dendrites with six symmetric arms along the 100 direction, each of which shows one trunk (long axis) and four branches (short axes), have been achieved using Pb(AC)2 and thioacetamide (TAA) as precursors, under the molar ratio Pb(AC)2/TAA = 2/1, at initial reaction temperature 80 degrees C, refluxing for 30 min at 100 degrees C, in the presence of cetyltrimethylammonium bromine (CTAB). The "nanorods" in each branch are parallel to each other in the same plane and are perpendicular to the trunk. The truncated nanocubes mainly bounded by the {100} plane were prepared under a different Pb(AC)2/TAA molar ratio, at initial reaction temperature 40 degrees C, refluxing for 12 h at 100 degrees C. Based on the systematic studies on their shape evolution, a possible growth mechanism of these PbS nano- and microstructures was proposed. The shapes of PbS nanocrystals with face-centered cubic (fcc) structure are mainly determined by the ratio (R) between the growth rates along the (100) and (111) directions. The Pb(AC)2/TAA molar ratio and the initial reaction temperature influence the growth ratio R in the formation of PbS nuclei at an early stage, which results in the final morphology of PbS nanocrystals. Under the current experimental conditions, we can control the PbS shape evolution by simply tuning the molar ratio, the initial reaction temperature, and the period of reaction. Based on the systematic studies on the shape evolution, this approach is expected to be employed for the control-shaped synthesis of other fcc structural semiconductor nanomaterials. The photoluminescence properties were investigated and the prepared nano- and microstructures displayed a very strong luminescence around 600-650 nm at room temperature.  相似文献   

20.
 About 2-μm-sized polystyrene (PS) particles having uneven surfaces were prepared by a posttreatment in which toluene-swollen PS particles were thrown into a methanol bath to release toluene therefrom rapidly. The posttreatment was named the “solvent-absorbing/releasing method”. The PS particle had large dents at the surface. The size of the dents was changed by the conditions of the posttreatment. Received: 3 August 1999/Accepted: 1 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号