首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
CaS:Ce, Sm nanophosphors were synthesized via solid state diffusion method. X-Ray diffraction confirmed the cubic crystalline phase of CaS:Ce, Sm nanoparticles. The particle size calculated using Debye-Scherrer formula was found to be 52 nm. The morphological investigations of the nanoparticles were made using TEM and found to have nearly spherical morphology with diameter 45-50 nm, which is in close agreement with the XRD result. The PL emission characteristics of CaS:Ce, Sm as a function of cerium and samarium concentrations have been studied and CaS:Ce0.6Sm0.4 system has maximum emission intensity, hence it was opted for further studies. The CaS:Ce0.6Sm0.4 system showed independent emission of Sm and Ce when excited at 330 and 450 nm, respectively. To study the energy transfer between cerium and samarium, the CaS:Ce0.6Sm0.4 was excited at wavelengths other than the excitation wavelengths of Ce (450 nm) and Sm (330 nm). The existence of Ce emission (at an excitation of 390 nm) even in the absence of Ce excitation band and Sm emission at an excitation of 405 nm, which is the excitation band of Ce, indicates the energy transfer at these two wavelengths. Thermoluminescence characteristics of 60Co irradiated CaS:Ce0.6Sm0.4 have been investigated for different doses of 0.14-125 Gy. All the glow curves show a single peak at 475 K. With increasing dose, the intensity of this peak increases and a shoulder is formed on the lower temperature side at 415 K at 21 Gy of exposure. CaS:Ce0.6Sm0.4 shows almost linear dose dependence up to 125 Gy.  相似文献   

2.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

3.
Green luminescence and degradation of Ce3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce3+ nanocrystalline phosphors during electron bombardment in an O2 environment. The effect of different oxygen pressures ranging from 1 × 10−8 to 1 × 10−6 Torr on the CL intensity was also investigated. A CaSO4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 × 10−6 Torr oxygen pressure after an electron dose of 50 C/cm2. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.  相似文献   

4.
Needle-like SrAl2O4:Eu2+, Dy3+ phosphors had been prepared by calcining the precursors obtained from hydrothermal process at the temperature of 1100 °C in a weak reductive atmosphere of active carbon. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction (XRD) patterns illustrated that the single-phase SrAl2O4 was formed at 1100 °C, which is much lower than that prepared by the traditional method. The transmission electron microscope (TEM) observation revealed the precursors and the resulted SrAl2O4:Eu2+, Dy3+ phosphors had well-dispersed distribution and needle-like morphology with an average diameter about 150 nm at the center and the length up to 1 μm. After irradiation by ultraviolet radiation with 350 nm for 5 min, the phosphors emit green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion, both the PL spectra and luminance decay revealed that the phosphors had efficient luminescent and long lasting properties.  相似文献   

5.
A novel blue-emitting long-lasting phosphor Sr3Al10SiO20:Eu2+,Ho3+ is prepared by the conventional high-temperature solid-state technique and their luminescent properties are investigated. XRD, photoluminescence (PL) and thermoluminescence (TL) are used to characterize the synthesized phosphors. These phosphors are well crystallized by calcinations at 1500-1600 °C for 3 h. The phosphor emits blue light and shows long-lasting phosphorescence after it is excited with 254/365 nm ultraviolet light. TL curves reveal the introduction of Ho3+ ions into the Sr3Al10SiO20:Eu2+ host produces a highly dense trap level at appropriate depth, which is the origin of the long-lasting phosphorescence in this kind of material. The long-lasting phosphorescence lasts for nearly 6 h in the light perception of the dark-adapted human eye (0.32 mcd/m2). All the results indicate that this phosphor has promising potential practical applications.  相似文献   

6.
The photophysical properties of bis((4-(phenylethynyl)phenyl)ethynyl)bis(tributylphosphine) platinum(II) with 2,2-bis(methylol)propionic acid (bis-MPA) dendritic substituents were studied. The fluorescence emission decay upon excitation in the UV (typically 350-380 nm) was rapid, in the order of 1 ns or shorter. In oxygen-saturated tetrahydrofuran solvent, the phosphorescence decay time was in the order of 200 ns. Bright phosphorescence at 530 nm was found for dendrimers under certain conditions. The associated phosphorescence decay time considerably increased to above 100-200 μs at higher concentrations (30-100 μM), and in oxygen-evacuated samples. Thus, it was clarified that the strongest triplet quenching was caused by oxygen dissolved in the sample, since it was possible to reversibly go between the bright and quenched phosphorescent state by freeze-thaw pumping cycles. The bright phosphorescence formed spontaneously for the cases with the larger dendritic substituents is implying a chromophore protecting effect. From time-dependent density functional calculations, the electronic structure of a few low-lying singlet and triplet states are discussed. A new mechanism for efficient triplet state formation and phosphorescence of Pt-ethynyls is proposed. Here, a fast relaxation via internal conversion takes the excited population of the dominant ππ* excitation into a lower singlet state of ligand-to-metal charge transfer character of πσ* type. This allows an efficient inter system crossing to the triplet state manifold.  相似文献   

7.
Different concentrations of Tb3+ ion-doped gadolinium aluminum garnet (GAG) nanophosphors have been synthesized by solvothermal reaction method and sintered at 1300 °C. The XRD patterns confirm that the GAG phosphors sintered at 1300 °C have a garnet structure with single cubic phase. The calculated crystallite size is about 92 nm. The SEM images of the phosphors show the spherical morphology agglomerated with many small particles. The luminescence properties of these phosphors have been carried out by the emission and excitation spectra along with lifetime measurements. The excitation spectra of GAG:Tb3+ phosphors consist of three broad bands due to the 4f8→4f75d1 transition and some sharp peaks due to the 4f8→4f8 transition. The emission spectra of the phosphors reveal two colors, such as blue due to 5D37FJ transitions and green due to the 5D47FJ transitions. The dynamics of the phosphors have been investigated by decay curves and the cross-relaxation process and is observed at 0.5 mol% Tb3+ concentration.  相似文献   

8.
Tb3+:NaGd(WO4)2 (Tb:NGW) phosphors with different Tb3+ concentrations have been synthesized by a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the Tb:NGW phosphors. XRD analysis confirmed the formation of NGW with scheelite structure. SEM study showed that the obtained Tb:NGW phosphors appeared to be nearly spherical and their sizes ranged from 1 to 1.5 μm. The excitation spectra of these systems showed an intense broad band with maximum at 270 nm related to the O→W ligand-to-metal charge-transfer state. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under UV light excitation. Analysis of the photoluminescence spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for Tb3+ is about 15 at% of Tb3+ ions in Tb:NGW phosphors.  相似文献   

9.
M G Patil  R D Lawangar 《Pramana》1980,15(1):91-95
The phosphorescence decay of a series of strontium sulphide microcrystalline phosphors prepared with varying amounts of neodymium as an activator has been studied at room temperature. The decay obeys the relationI =I 0 t −b withb lying between 0·35 and 0·98. The trap depths have been evaluated by peeling off logI-t curves. The results show that the distribution of trap levels is likely to be quasi-uniform and the process of retrapping during luminescence is negligible.  相似文献   

10.
Undoped and cerium doped Calcium sulfide (CaS) phosphors were synthesized using solid state diffusion method. The X-ray diffraction pattern revealed that both undoped and doped CaS crystallites have cubic structure with average crystallite size varying from 20 to 30 nm. Scanning electron micrographs indicated that Ce doped CaS phosphors were composed of whiskers with different dimensions and orientations. The optical properties of undoped and Ce doped particles were characterized using Photoluminescence (PL) and UV-Vis absorption spectroscopy. The PL emission spectrum of cerium doped CaS phosphors for an excitation wavelength 465 nm showed a main peak at 500 nm and a shoulder peak at 556 nm due to 5d?→?4f transition in Ce3+ ions. The variation of PL intensity with cerium concentration was investigated and the maximum PL intensity was obtained for a doping concentration of 3 wt.%. The optical band gap of the samples was estimated from the diffuse reflectance spectrum and was found to increase with increase in cerium concentration. The enhanced optical properties of these phosphors can be exploited in various optoelectronic devices including displays and bioimaging techniques.  相似文献   

11.
微波合成的纳米球形CaS∶Ag+荧光体的荧光光谱   总被引:4,自引:0,他引:4  
在微波场作用下 ,快速合成了CaS∶Ag+荧光体 ,用X射线粉末衍射 (XRD)分析证实了它们是立方晶相。测定了它们的激发光谱和发射光谱 ,发现其发射峰位于 372nm、45 0nm和 5 77nm ,分别是由A′gCa V2 +S 中心的Ag+离子、间隙Ag+离子、A′gCa的Ag+离子和CaS基质自激活产生的 ,随着Ag+的掺杂浓度和助熔剂的改变 ,Ag+离子的几个发光中心互相转化 ,荧光体发出不同颜色的荧光。用扫描电镜 (SEM)观察了它们的晶体形貌和尺寸大小 ,结果表明CaS∶Ag+荧光体的晶体形貌都是球形的 ,但其粒径和晶体的分散性受Ag+的掺杂浓度和助熔剂的影响 ,出现了纳米晶 ( 7~ 10 0nm)和亚微米晶 ( 12 5~ 30 0nm)。  相似文献   

12.
This paper reports the preparation of long persistent Sr2Al2SiO7:Eu2+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors and the comparison of their photoluminescent properties. The silicate phosphors prepared by solid-state reaction routine showed a broad blue emission peaking at 484 nm when activated by UV illumination. Such a bluish-green emission can be attributed to the intrinsic 4f-5d transitions of Eu2+. After the UV source was switched off, long persistent phosphorescence could be observed by naked eyes for both samples in darkness. Afterglow measurements revealed that Eu/Dy codoped phosphor possesses better afterglow properties than the Eu single doped one, since the maximum lifetime (τmax=99 s) of the photons calculated from the decay profile is much larger than that of the Eu single doped phosphor (τmax=82 s). TSL results suggested that the difference in afterglow properties was caused by the difference in the electron traps within the crystal lattice. For Eu/Dy codoped phosphor, the doping of Dy ions produced electron traps with trap depth of 0.52 eV, which is suitable and therefore leads to good persistence. However, in the case of Eu single doped phosphor, the trap depth is 0.88 eV, which is really too deep an energy barrier to overcome, and therefore a poor persistence was observed in the experiment.  相似文献   

13.
CaS∶Eu, Sm是一种典型的电子俘获型光存储材料,文章采用湿法在还原气氛中制备了CaS∶Eu, Sm粉末样品。测量了这种光存储材料的XRD、激发光谱、发射光谱、光激励发光光谱、热释光谱以及光激励发光衰减曲线。XRD结果表明样品在1 050 ℃晶格已经形成。光谱测试结果说明紫外光可激发该材料,作为信息写入光源。样品被紫外光源饱和激发后,用980 nm红外激光激励,发射出峰值位于635 nm的红光。光激励发光起初衰减较快,随后有一个较长的平缓期。且样品具有合适深度的陷阱能级,能够稳定存储信息。对CaS∶Eu, Sm的光存储机理进行了探讨。  相似文献   

14.
Monodispersed spherical (Y,Gd)BO3:Eu3+ phosphors have been fabricated by a solvothermal method. Each particle is composed of crystalline hexagonal phase primary nanoparticles (∼10 nm in diameter), leading to an abnormal energy-dependent decay behavior, as compared to a micron scale phosphor prepared by the conventional solid-state reaction method. The faster luminescence decay excited under a specific wavelength region making the resultant phosphor suitable for the up-coming display devices, such as 3-dimensional (3D) imaging.  相似文献   

15.
A new phosphor, CaZnGe2O6:Mn2+, which emits red long-lasting phosphorescence centered at 648 nm upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated in this paper. XRD, photoluminescence, thermoluminescence spectra and afterglow decay curve are used to characterize the synthesized phosphor. This phosphor is well crystallized by calcination at 1150 °C for 3 h and possesses excellent performance. The color coordinate values of this phosphor are x=0.64, y=0.26 under 250 nm UV light excitation. Under 250-nm UV light irradiation, this phosphor shows obvious long-lasting phosphorescence that can be seen with the naked eye in the dark clearly after the irradiation source has been removed for more than 3 h. The possible mechanism of this red-light-emitting long-afterglow phosphor is also investigated based on the experiment results.  相似文献   

16.
In order to study different characteristic luminescence of Eu2+ and Sm3+, delayed photoluminescence (DPL) and infrared stimulated luminescence (ISL) spectra of CaS doped with europium and samarium have been investigated. The influence of Eu and Sm concentration on luminescence of Eu2+ in photoluminescence (PL) and ISL was respectively studied. It was found that, at low doping levels, PL emission intensity of Eu2+ increased linearly with increment of Eu, while decreased linearly with increment of Sm. However, further increment of Eu and Sm in CaS:Eu,Sm could not increase either the luminescent centres of Eu2+ or electron trapping sites of Sm3+. Different local environment of Eu2+ and Sm3+ in the lattice position is thought to be the cause of all observed luminescence phenomena. Finally, the maximum emission in ISL was obtained at 1000 ppm europium and 750 ppm samarium.  相似文献   

17.
Intense red emitting phosphors MGd2(MoO4)4: Eu3+ (M=Ca, Sr and Ba) have been synthesized by the simple sol-gel technique. The formation processes and the phase impurity of phosphors are characterized by thermogravimetry-differential thermal analysis (TG-DTA) and power X-ray diffraction (XRD). The narrower size distribution and the regular shape of the phosphor particles are also measured by Field emission scanning electronic microscopy (FE-SEM). Photo-luminescent properties of the phosphors are performed at room temperature. Their excitation spectra present strong absorption at 395 nm near-UV light and 465 nm blue light, which match well with commercial LED chips. The phosphors exhibit satisfactory and excellent red light dominated by 616 nm and their photoluminescence intensity is about 3-4 times stronger than that of phosphor YAG under the 465 nm excitation. In addition, the optimal concentrations of Eu3+ for phosphors MGd2(MoO4)4 (M=Ca, Sr and Ba) have also been determined.  相似文献   

18.
In the present work, dinuclear complexes of salicylic acid (Sal) and 1,10-phenanthroline (Phen) were synthesized with different concentrations of Samarium ion (Sm3+) in Poly Vinyl Alcohol (PVA) polymer films and their structural and spectroscopic properties were investigated. Judd-Ofelt theory has been employed to estimate the several radiative parameters for SmCl3 and Sm(Sal)3Phen complex in PVA polymer film which are in fairly agreement between the experimental and the theoretical values supporting the J-O theory. Photoluminescence properties of the complex have been studied on 355 nm and 400 nm excitations in steady state as well as in time domain. On the basis of the UV-Vis absorption, FT-IR absorption, excitation, emission spectra and decay curves, spectroscopic properties of these films were studied and the photophysics involved was explained in terms of energy transfer and the RE encapsulation effect.  相似文献   

19.
In the last years many insulating and semiconducting materials activated with rare-earth elements were found to exhibit phosphorescence and thermoluminescence properties, and are attracting increasing interest due to the variety of application of long-lasting phosphors. In this work we studied the phosphorescence decay and thermoluminescence properties of CaGa2S4:Eu2+ as a function of temperature in the 9-325 K range. The comparison between spectra recorded as a function of time delay from the excitation pulse at different temperatures indicates that long-lasting emissions peaked at about 2.2 eV occurs at Eu2+ sites. Thermoluminescence glow curve is characterized by five components at 69, 98, 145, 185 and 244 K. Experimental data are discussed in the framework of generalized order of kinetic model and allow to estimate the activation energies of trapping defects. The origin of glow components at 69, 98, 145 and 244 K is correlated to trapping defects induced by Eu2+ doping, while the component at 185 K is attributed to a continuous distribution of defects.  相似文献   

20.
Photoluminescence spectra and decays under pulsed N2 (337 nm) laser excitation were measured for hydrothermally grown bulk and liquid-phase epitaxy (LPE)-grown film ZnO samples within 9-300 K. Temperature dependence of integrated spectra over the exciton and visible spectral regions was evaluated using a model involving standard energy barrier processes. Decay curves measured within a broad time window (10 ns-1 ms) and with extreme signal/background ratio (five orders of magnitude) point to complex decay mechanism in which the exponential and inverse power-law processes can coexist. There is no straightforward interconnection between the observed temperature dependence of integrated visible photoluminescence intensity and its decay shape over the 9-300 K temperature interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号