首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the problems of global exponential stability of reaction-diffusion high-order Markovian jump Hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential stability in the mean square for the reaction-diffusion high-order neural networks are established, which are easily verifiable and have a wider adaptive. An example is also discussed to illustrate our results.  相似文献   

2.
This paper investigates the delay-dependent global asymptotic stability problem of stochastic genetic regulatory networks (SGRNs) with Markovian jumping parameters. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-dependent sufficient condition is obtained in the linear matrix inequality (LMI) form such that delayed SGRNs are globally asymptotically stable in the mean square. Distinct difference from other analytical approaches lies in “linearization” of the genetic regulatory networks (GRNs) model, by which the considered GRN model is transformed into a linear system. Then, a process, which is called parameterized first-order model transformation is used to transform the linear system. Novel criteria for global asymptotic stability of the SGRNs with constant delays are obtained. Some numerical examples are given to illustrate the effectiveness of our theoretical results.  相似文献   

3.
The paper is concerned with a stability analysis problem for neural networks with Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process, which are governed by a Markov process with discrete and finite state space. A new type of Markovian jumping matrix Pi is introduced in this paper. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the lower conservatism and the effectiveness of the proposed LMI conditions.  相似文献   

4.
In this paper, the problems of stochastic stability and robust control for a class of uncertain sampled-data systems are studied. The systems consist of random jumping parameters described by finite-state semi-Markov process. Sufficient conditions for stochastic stability or exponential mean square stability of the systems are presented. The conditions for the existence of a sampled-data feedback control and a multirate sampled-data optimal control for the continuous-time uncertain Markovian jump systems are also obtained. The design procedure for robust multirate sampled-data control is formulated as linear matrix inequalities (LMIs), which can be solved efficiently by available software toolboxes. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed techniques.  相似文献   

5.
In this paper, the problem of stochastic stability criterion of Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates is considered. Some new delay-dependent stability criteria are derived by choosing a new class of Lyapunov functional. The obtained criteria are less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

6.
Robust stability for stochastic Hopfield neural networks with time delays   总被引:6,自引:0,他引:6  
In this paper, the asymptotic stability analysis problem is considered for a class of uncertain stochastic neural networks with time delays and parameter uncertainties. The delays are time-invariant, and the uncertainties are norm-bounded that enter into all the network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov–Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be checked readily by using some standard numerical packages, and no tuning of parameters is required. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.  相似文献   

7.
8.
In this paper, the dynamic analysis problem is considered for a new class of Markovian jumping impulsive stochastic Cohen–Grossberg neural networks (CGNNs) with discrete interval and distributed delays. The parameter uncertainties are assumed to be norm bounded and the discrete delay is assumed to be time-varying and belonging to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the Lyapunov–Krasovskii functional and stochastic stability theory, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities. Some asymptotic stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be easily calculated by LMI Toolbox in Matlab. A numerical example is provided to show that the proposed results significantly improve the allowable upper bounds of delays over some existing results in the literature.  相似文献   

9.
In this paper, the stability analysis problem is investigated for a class of Markovian jumping genetic regulatory networks (GRNs) with mixed time delays (discrete time delays and distributed time delays) and stochastic perturbations. The main purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid and protein is asymptotically stable. By utilizing a more general Lyapunov-Krasovskii functional based on the idea of “delay decomposing” and the LMI (linear matrix inequality) technique, we derive sufficient delay-dependent conditions ensuring the asymptotically stability of the GRNs with mixed time delays and noise perturbations in terms of LMI. Finally, simulation examples are exploited to illustrate the effectiveness of the developed theoretical results.  相似文献   

10.
In this paper, by using the Lyapunov-Krasovskii functional method, we investigate the global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type. Some new stability criteria are presented in terms of linear matrix inequality (LMI). Two numerical examples are also given to show the effectiveness of the obtained results using LMI control toolbox in MATLAB.  相似文献   

11.
In this paper, dynamical behaviors of Hopfield neural networks system with distributed delays were studied. By using contraction mapping principle and differential inequality technique, a sufficient condition was obtained to ensure the existence uniqueness and global exponential stability of the equilibrium point for the model. Here we point out that our methods, which are different from previous known results, base on the contraction mapping principle and inequality technique. Two remarks were also worked out to demonstrate the advantage of our results.  相似文献   

12.
讨论带有可变时滞的Hopfield神经网络的全局指数稳定性.在非线性激励函数满足Lipschitz条件的假设下,利用推广的Halanay不等式,Dini导数和分析技巧,建立了这类神经网络系统全局指数稳定的几个判别准则.这些判别准则仅仅依赖于系统的参数.  相似文献   

13.
利用拓扑度理论中的连续性引理和推广Halanay不等式研究了变时滞的细胞神经网络的周期解的存在性及全局指数稳定性.给出了判别周期解及指数稳定性的代数判据,所得判据易于检验,具有广泛的实用性.同时,改进了已有文献的相关结论,最后通过数值例子说明结论的有效性.  相似文献   

14.
In this paper we investigate a class of Hopfield neural networks subject to periodic impulses. First we give sufficient conditions to ensure existence and exponential stability of the anti-periodic solutions, which are new and complementary to previously known results. Then we present an example to demonstrate our results.  相似文献   

15.
This paper deals with the mean-square asymptotic stability of stochastic Markovian jump systems with time-varying delay. Based on a new stochastic inequality and convex analysis property, some novel stability conditions are presented. In the derivation, the information of the time-varying delay is retained and the estimation of it by the worst-case enlargement is not involved. Some special cases of the systems under consideration are also investigated. Illustrative examples are given to show the effectiveness of the proposed approach.  相似文献   

16.
This article discusses the issue of robust stability analysis for a class of Markovian jumping stochastic neural networks (NNs) with probabilistic time‐varying delays. The jumping parameters are represented as a continuous‐time discrete‐state Markov chain. Using the stochastic stability theory, properties of Brownian motion, the information of probabilistic time‐varying delay, the generalized Ito's formula, and linear matrix inequality (LMI) technique, some novel sufficient conditions are obtained to guarantee the stochastical stability of the given NNs. In particular, the activation functions considered in this article are reasonably general in view of the fact that they may depend on Markovian jump parameters and they are more general than those usual Lipschitz conditions. The main features of this article are described in the following: first one is that, based on generalized Finsler lemma, some improved delay‐dependent stability criteria are established and the second one is that the nonlinear stochastic perturbation acting on the system satisfies a class of Lipschitz linear growth conditions. By resorting to the Lyapunov–Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established using an efficient LMI approach. Finally, two numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–72, 2016  相似文献   

17.
The paper is concerned with robust stability for generalized neural networks (GNNs) with both interval time-varying delay and time-varying distributed delay. Through partitioning the time-delay, choosing one augmented Lyapunov-Krasovskii functional, employing free-weighting matrix method and convex combination, the sufficient conditions are obtained to guarantee the robust stability of the concerned systems. These stability criteria are presented in terms of linear matrix inequalities (LMIs) and can be easily checked. Finally, three numerical examples are given to demonstrate the effectiveness and reduced conservatism of the obtained results.  相似文献   

18.
本文讨论马尔可夫调制及带Poisson跳随机时滞微分方程,其主要目的是研究方程解的依分布稳定.  相似文献   

19.
By constructing suitable Lyapunov functionals and combining with matrix inequality technique, a new simple sufficient condition is presented for the global asymptotic stability in the mean square of delayed neural networks.  相似文献   

20.
In this paper, we consider the stochastic Cohen-Grossberg-type BAM neural networks with mixed delays. By utilizing the Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) approach, some sufficient LMI-based conditions are obtained to guarantee the global asymptotic stability of stochastic Cohen-Grossberg-type BAM neural networks with mixed delays. These conditions can be easily checked via the MATLAB LMI toolbox. Moreover, the obtained results extend and improve the earlier publications. Finally, a numerical example is provided to demonstrate the low conservatism and effectiveness of the proposed LMI conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号