首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents a rigorous analysis of mathematical and physical properties for solutions of multiscale deconvolution turbulence models. We show that solutions of these models exactly conserve model quantities for the integral invariants of fundamental physical importance: kinetic energy, helicity, and (in two dimensions) enstrophy. The kinetic energy conservation is the key that allows us to next apply the phenomenology of homogeneous, isotropic turbulence to establish the existence of a model energy cascade and, in particular, that the cascade exhibits enhanced energy dissipation in a secondary accelerated cascade, which ends at the model's microscale (which we establish is larger than the Kolmogorov microscale). We also prove that the model dissipates energy at the same rate as true turbulent flow, ~ O(U3L), independent of Reynolds number. Lastly, we prove the existence of global attractors for the model solutions; the proof of which also shows that solutions are actually one degree of regularity higher than previously known. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We study a computationally attractive algorithm (based on an extrapolated Crank‐Nicolson method) for a recently proposed family of high accuracy turbulence models, the Leray‐deconvolution family. First we prove convergence of the algorithm to the solution of the Navier‐Stokes equations and delineate its (optimal) accuracy. Numerical experiments are presented which confirm the convergence theory. Our 3d experiments also give a careful comparison of various related approaches. They show the combination of the Leray‐deconvolution regularization with the extrapolated Crank‐Nicolson method can be more accurate at higher Reynolds number that the classical extrapolated trapezoidal method of Baker (Report, Harvard University, 1976). We also show the higher order Leray‐deconvolution models (e.g. N = 1,2,3) have greater accuracy than the N = 0 case of the Leray‐α model. Numerical experiments for the 2d step problem are also successfully investigated. Around the critical Reynolds number, the low order models inhibit vortex shedding behind the step. The higher order models, correctly, do not. To estimate the complexity of using Leray‐deconvolution models for turbulent flow simulations we estimate the models' microscale.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

3.
We study a new enhanced‐physics‐based numerical scheme for the NS‐alpha turbulence model that conserves both energy and helicity. Although most turbulence models (in the continuous case) conserve only energy, NS‐alpha is one of only a very few that also conserve helicity. This is one reason why it is becoming accepted as the most physically accurate turbulence model. However, no numerical scheme for NS‐alpha, until now, conserved both energy and helicity, and thus the advantage gained in physical accuracy by modeling with NS‐alpha could be lost in a computation. This report presents a finite element numerical scheme, and gives a rigorous analysis of its conservation properties, stability, solution existence, and convergence. A key feature of the analysis is the identification of the discrete energy and energy dissipation norms, and proofs that these norms are equivalent (provided a careful choice of filtering radius) in the discrete space to the usual energy and energy dissipation norms. Numerical experiments are given to demonstrate the effectiveness of the scheme over usual (helicity‐ignoring) schemes. A generalization of this scheme to a family of high‐order NS‐alpha‐deconvolution models, which combine the attractive physical properties of NS‐alpha with the high accuracy gained by combining α‐filtering with van Cittert approximate deconvolution. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

4.
This report gives a reinterpretation of the NS-α model which leads to a family of high order NS-α-deconvolution models with NS-α as the zeroth order case. First, we show that the Navier-Stokes-α model arises by adding helicity correction to Leray-α model. Higher order Leray models have recently been proposed in [W. Layton, R. Lewandowski, A high accuracy Leray-deconvolution model of turbulence and its limiting behavior, Anal. Appl. 6 (1) (2008); W. Layton, C. Manica, M. Neda, L. Rebholz, Numerical analysis and computational testing of a high-accuracy Leray-deconvolution model of turbulence, Numer. Methods Partial Differential Equations, in press]: the so-called Leray-deconvolution models, that employ van Cittert approximate deconvolution to decrease consistency error. We use an analogous helicity correction idea to develop a family of higher order accurate NS-α type models, the NS-α-deconvolution models. We prove several mathematical and physical properties for this new family of models and discuss the design of efficient algorithms for them.  相似文献   

5.
We apply the phenomenology of homogeneous, isotropic turbulence to the family of approximate deconvolution models proposed by Stolz and Adams. In particular, we establish that the models themselves have an energy cascade with two asymptotically different inertial ranges. Delineation of these gives insight into the resolution requirements of using approximate deconvolution models. The approximate deconvolution model's energy balance contains both an enhanced energy dissipation and a modification to the model's kinetic energy. The modification of the model's kinetic energy induces a secondary energy cascade which accelerates scale truncation. The enhanced energy dissipation completes the scale truncation by reducing the model's micro-scale from the Kolmogorov micro-scale.  相似文献   

6.
In the present study, the turbulent gas flow dynamics in a two-dimensional convergent–divergent rocket nozzle is numerically predicted and the associated physical phenomena are investigated for various operating conditions. The nozzle is assumed to have impermeable and adiabatic walls with a flow straightener in the upstream side and is connected to a plenum surrounding the nozzle geometry and extended in the downstream direction. In this integrated component model, the inlet flow is assumed a two-dimensional, steady, compressible, turbulent and subsonic. The physics based mathematical model of the considered flow consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The system of the governing equations with turbulent effects is solved numerically using different turbulence models to demonstrate their numerical accuracy in predicting the characteristics of turbulent gas flow in such complex geometry. The performance of the different turbulence models adopted has been assessed by comparing the obtained results of the static wall pressure and the shock position with the available experimental and numerical data. The dimensionless shear stress at the nozzle wall and the separation point are also computed and the flow field is illustrated. The various implemented turbulence models have shown different behavior of the turbulent characteristics. However, the shear-stress transport (SST) kω model exhibits the best overall agreement with the experimental measurements. In general, the proposed numerical procedure applied in the present paper shows good capability in predicting the physical phenomena and the flow characteristics encountered in such kinds of complex turbulent flow.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(17-18):4226-4237
Strong nonlinear or very fast phenomena such as mixing, coalescence and breakup in chemical engineering processes, are not correctly described using average turbulence properties. Since these phenomena are modeled by the interaction of fluid particles with single or paired vortices, distribution of the properties of individual turbulent vortices should be studied and understood. In this paper, statistical analysis of turbulent vortices was performed using a novel vortex tracking algorithm. The vortices were identified using the normalized Q-criterion with extended volumes calculated using the Biot–Savart law in order to capture most of the coherent structure related to each vortex. This new and fast algorithm makes it possible to estimate the volume of all resolved vortices. Turbulence was modeled using large-eddy simulation with the dynamic Smagorinsky–Lilly subgrid scale model for different Reynolds numbers. Number density of turbulent vortices were quantified and compared with different models. It is concluded that the calculated number densities for vortices in the inertial subrange and also for the larger scales are in very good agreement with the models proposed by Batchelor and Martinez-Bazán. Moreover, the associated enstrophy within the same size of coherent structures is quantified and its distribution is compared to models for distribution of turbulent kinetic energy. The associated enstrophy within the same size of coherent structures has a wide distribution that is normal distributed in the logarithmic scale.  相似文献   

8.
We consider the family of approximate deconvolution models (ADM) for the simulation of the large eddies in turbulent viscous, incompressible, electrically conducting flows. We prove the existence and uniqueness of solutions to the ADM-MHD equations, their weak converge to the solution of the MHD equations as the averaging radii tend to zero, and derive a bound on the modeling error. We demonstrate that the energy and helicity of the models are conserved, and the models preserve the Alfvén waves. We provide the results of the computational tests, that verify the accuracy and physical fidelity of the models.  相似文献   

9.
Since the symmetries of fluid motion are admitted by all statistical quantities of turbulent flows as can be taken from the multipoint equations, we can derive conditions for turbulence models so that they capture the proper flow physics. Concerning these constraints we will exemplary investigate the kϵ – model for its capability to reproduce new scaling laws derived from symmetry methods. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513×257 2three-dimensional ninth-order weighted essentially nonoscillatory shock-capturing simulations.A two-mode initial perturbation with superposed random noise is used to model the Mach 1.5 air/SF6 Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces,and density cross-sections are utilized to show the detailed flow structure before,during,and after reshock.It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock.The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model.A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also presented.Finally,the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra,as well as the evolution of the baroclinic enstrophy production,buoyancy production,and shear production terms in the enstrophy and turbulent kinetic transport equations.  相似文献   

11.
It is shown that the Boussinesq–Peregrine system, which describes long waves of small amplitude at the surface of an inviscid fluid with variable depth, admits a number of approximate conservation equations. Notably, this paper provides accurate estimations for the approximate conservation of the mechanical balance laws associated with mass, momentum, and energy. These precise estimates offer valuable insights into the behavior and dynamics of the system, shedding light on the conservation principles governing the wave motion.  相似文献   

12.
The Lagrangian-Averaged Navier-Stokes alpha (LANS-α) and Leray turbulence parameterizations are demonstrated in a primitive-equation ocean model using an idealized channel domain. For LANS-α, turbulence statistics such as kinetic energy, eddy kinetic energy, and temperature profiles resemble doubled-resolution statistics with the standard model. In a North Atlantic domain with realistic topography, the Leray model increases eddy activity. The LANS-α and Leray models show great promise to improve heat transport and temperature distributions in global ocean-climate simulations, as these processes depend on better resolution of eddies near the grid-scale. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
建立了固液两相流中更一般的K-ε双方程湍流模式。模化了固相和液相的连续方程、动量方程及K方程和ε方程。该湍流模型考虑了固液两相间速度的滑移,颗粒间的作用及相间作用。使用本文所建立的湍流模型,数值预测了一管湍流中的沙水混合流动,其预测结果与实验结果比较一致。  相似文献   

14.
15.
The turbulent dispersion of non-evaporating droplets in an axisymmetric round jet issuing from a nozzle is investigated both experimentally and theoretically. The experimental data set has a well-defined inlet boundary with low turbulence intensity at the nozzle exit, so that droplet dispersion is not affected by the transport of nozzle-generated fluctuating motion into the jet, and is influenced solely by turbulence in the gas phase produced in the shear layer of the jet. This data set is thus ideal for testing algebraic models of droplet fluctuating motion that assume local equilibrium with the turbulence in the gas phase. Moreover, the droplet flux measurements are sufficiently accurate that conservation of the total volume flow of the droplet phase has been demonstrated. A two-fluid turbulence modelling approach is adopted, which uses the kε turbulence model and a simple algebraic model that assumes local equilibrium to predict the fluid and droplet turbulent correlations, respectively. We have shown that the kε turbulence model lacks generality for predicting the spread of momentum in jets with and without a potential core. However, in general, the model predicts the radial dispersion of droplets in the considered turbulent jet with reasonable accuracy over a broad range of droplet sizes, once deficiencies in the kε turbulence model are taken into account.  相似文献   

16.
A method for resolving turbulent flow problems is presented, aiming at competing with the existing mathematical tractable Approximate Deconvolution Models in terms of accuracy, and outperforming these models in terms of the computational time needed. Full numerical analysis is performed, and the method is shown to be stable, easy to implement and parallelize, and computationally fast. The proposed method employs the defect correction approach to solve spatially filtered Navier–Stokes equations. A simple numerical test is provided that compares the method against the approximate deconvolution turbulence model (ADM). When resolving a fluid flow at high Reynolds number, the numerical example verifies the key feature of the method: while having the accuracy comparable to that of the ADM, the method computes in less than 80% of the time needed for the turbulence model—even before the parallelization.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 268–288, 2015  相似文献   

17.
Numerical predictions are presented of the hydrodynamic characteristics of developing and fully-developed turbulent flow in a square duct. The turbulent stresses in the plane of the cross-section, gradients of which cause the familiar secondary flows, are approximated by gradients in the axial mean velocity. Two distinct approximations are investigated, one of which specifies some of the model ‘constants’ as functions of the gradient of the length scale to account for wall effects. The stresses in the axial momentum equation are calculated from an eddy viscosity deduced from the K-W model of turbulence, K being the turbulence energy and W, a measure of the time-mean-square-vorticity fluctuations. The approximation incorporating wall effects generally performs better than the other when compared with fully-developed flow-data. This same approximation also compares favourably with data for developing flow and predictions based on K-? models in the literature.  相似文献   

18.
Current research models the Al2O3 47nm and Al2O3 36nm nanoparticles transportation through peristalsis with entropy optimization. Conservation laws for mass, momentum and energy are used to model the present flow situation. These equations elaborates the magnetohydrodynamics, Hall, thermal radiation, Joule heating, heat generation and absorption. Convective heat transfer impacts are studied at channel walls. Entropy is modeled in view of thermodynamics second law. Two different expressions for effective viscosity are accounted. Simplification of the modeled equations is done through lubrication assumptions. Solution for momentum equation is obtained analytically and for numerically for temperature equation. Built-in shooting procedure is utilized to obtain the desired numerical results. Later on these obtained results are used to sketch and discussed the flow quantities of interest for the influential parameters accounted in the problem.  相似文献   

19.
Using the field theory renormalization-group technique in the two-loop approximation, we study the influence of helicity (spatial parity violation) on the turbulent magnetic Prandtl number in the model of kinematic magnetohydrodynamic turbulence, where the magnetic field behaves as a passive vector quantity advected by the helical turbulent environment given by the stochastic Navier-Stokes equation. We show that the presence of helicity decreases the value of the turbulent magnetic Prandtl number and that the two-loop helical contribution to the turbulent magnetic Prandtl number is up to 4.2% of its nonhelical value. This result demonstrates the strong stability of the properties of diffusion processes of the magnetic field in turbulent environments with spatial parity violation compared with the corresponding systems without the helicity.  相似文献   

20.
运用单影响函数的双尺度直接相互作用原理(简称TSDIA)研究了湍流中广泛存在的动量、标量、能量的逆梯度输运现象,得到了可定性描述动量、标量及能量逆输运的模型表达式.然后运用惯性子区的理论对所得结果进行了简化,在计算中对标量与动量采用了不同的时间尺度,同时仅引入了动量的低波数截断km.所得结果对于低阶的情形与前人的结果一致.最后利用所得结果分析了非对称槽道流与圆柱尾流中出现的动量、被动标量及湍能的逆梯度输运现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号