首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic nanocrystalline CdS film was deposited at liquid-liquid interface of surfactants and an electrolyte containing 4 mmol L−1 cadmium chloride (CdCl2) and 16 mmol L−1 thioacetamide (CH3CSNH2) with an initial pH value of 5 at 15 °C by electrochemical synthesis. The nanofilm was characterized by transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM), atomic force microscopy (AFM), ultraviolet visible (UV-vis) absorption spectroscopy and fluorescence spectroscopy. The surface morphology and particle size of the nanofilm were investigated by AFM, SEM and TEM, and the crystalline size was 30-50 nm. The thickness of the nanofilm calculated by optical absorption spectrum was 80 nm. The microstructure and composition of the nanofilm was investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), showing its polycrystalline structure consisting of CdS and Cd. Optical properties of the nanofilm were investigated systematically by UV-vis absorption and fluorescence spectroscopy. A λonset blue shift compared with bulk CdS was observed in the absorption spectra. Fluorescence spectra of the nanofilm indicated that the CdS nanofilm emitted blue and green light. The nanocomposites film electrode will bring about anodic photocurrent during illumination, showing that the transfer of cavities produces photocurrent.  相似文献   

2.
The composite of aluminum-substituted mesoporous silica (Al-HMS) molecular sieve coupled with CdS (CdS/Al-HMS) was prepared by template, ion exchange and sulfurization reactions. The result of low angle XRD patterns showed that the low content of 2.5 wt% CdS is incorporated inside Al-HMS channels. The results of diffuse reflectance UV-visible spectra and fluorescence emission spectra exhibited that the absorption edge and photoluminescence peak for CdS/Al-HMS are blue-shifted about 75 nm and 40 nm in comparison to bulk CdS, respectively. The activities of hydrogen production by photocatalytic degradation of formic acid were evaluated under visible light irradiation (λ ≥ 420 nm) and the CdS/Al-HMS loaded 0.07 wt% Ru showed the highest H2 evolution at a rate of 3.7 mL h−1 with an apparent quantum yield of 1.2% at 420 nm.  相似文献   

3.
CdSe quantum dots (QDs) prepared using an aqueous sodium selenosulphite and N,N′-dimethylformamide (DMF) in commercial polymethylmethacrylate (PMMA) showed excellent optical properties. Tuning of the absorption and emission wavelengths by varying the selenium concentration with respect to cadmium is studied. As-prepared CdSe quantum dots showed absorption band at 405 nm (3.06 eV) associated with the formation of ‘early-stage’ CdSe nano-particles along with weak absorption at 480–90 nm due to continuous growth of the particles. The blue-green and yellow-green light emissions were observed from as-prepared solutions. Photoluminescence (PL) measurement showed band-edge emissions at around 430 nm for small clusters but a more stable emission at 544 nm for the 1:1 CdSe sample. X-ray diffraction (XRD) pattern of the CdSe/PMMA powder with Cd/Se ratio of 1:1 showed broad pattern for cubic CdSe. Transmission electron microscopy (TEM) showed cube like de-shaped spherical dots in the region of about 5 nm.  相似文献   

4.
The multilayer film of PMMA containing mononuclear octakis(mercaptopropylisobutyl-POSS) substituted phthalocyaninato-copper (CuPc) was obtained by spin-coating on quartz substrate. The nonlinear absorption and optical limiting (OL) performance of CuPc have been described using the open-aperture Z-scan technique. The measurements were performed using collimated 4 ns pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The results indicate that CuPc/PMMA composite exhibits a much larger nonlinear absorption coefficient, a lower saturable fluence and a lower absorption cross-section ratio for optical limiting when compared to the same CuPc molecules in solution. No evidence of film fatigue or degradation was observed in the CuPc/PMMA film after numerous scans at varying laser intensity. This material is a good candidate for optical limiting applications.  相似文献   

5.
The presence of surfactants (Hexamine, tetraethylammonium bromide (TEAB), cetyltrimethylammonium bromide (CTAB), tetraoctylammonium bromide (TOAB) and PVP) on the surface of zinc oxide (ZnO) nanoparticles resulted variation in their optical properties. The optical properties of each surfactant-capped zinc oxide nanoparticles were investigated using UV-visible absorption and fluorescence techniques. The particle size of these nanoparticles were calculated from their absorption edge, and found to be in the quantum confinement range. The absorption spectra and fluorescent emission spectra showed a significant blue shift compared to that of the bulk zinc oxide. Large reduction in the intensity of visible emission of zinc oxide/surfactant was observed and these emissions were vanished more quickly, with the decrease in excitation energy, for the smaller nanoparticles. Out of the four surfactants (other than PVP), CTAB-capped zinc oxide has smallest particle size of 2.4 nm, as calculated from the absorption spectrum. Thus the presence of surfactant on the surface of zinc oxide plays a significant role in reducing defect emissions. Furthermore, ZnO/PVP nanoparticles showed no separate UV emission peak; however, the excitonic UV emission and the visible emission at 420 nm overlap to form a single broad band around 420 nm.  相似文献   

6.
Photoluminescence of CdS nanoparticles embedded in a starch matrix   总被引:1,自引:0,他引:1  
CdS nanoparticles were synthesized by precipitation in aqueous solution using starch as the capping molecule, and the effect of the pH of the solution on the optical absorption, photoluminescence, and size of the nanoparticles was studied. Absorption spectra, obtained by photoacoustic spectroscopy, indicated that the band gap energy of the crystalline nanoparticles decreased from 2.68 eV down to 2.48 eV by increasing the pH of the solution from 9 up to 14. The X-ray diffraction analysis revealed that the CdS nanoparticles were of zinc blende structure, and that the particle size increased from 1.35 nm up to 2.45 nm with increasing pH. In addition, temperature-dependent photoluminescence (PL) measurements of the capped material showed a blue-shift of the emission peak for temperatures higher than 150 K, indicating the influence of starch on the formation of defect levels on the surface of the CdS nanoparticles.  相似文献   

7.
We report a study on the SHI induced modifications on structural and optical properties of ZnO/PMMA nanocomposite films. The ZnO nanoparticles were synthesized by the chemical route using 2-mercaptoethanol as a capping agent. The structure of ZnO nanoparticles was confirmed by XRD, SEM and TEM. These ZnO nanoparticles were dispersed in the PMMA matrix to form ZnO/PMMA nanocomposite films by the solution cast method. These ZnO/PMMA nanocomposite films were then irradiated by swift heavy ion irradiation (Ni8+ ion beam, 100 MeV) at a fluence of 1×1011 ions/cm2. The nanocomposite films were then characterized by XRD, UV-vis absorption spectroscopy and photoluminescence spectroscopy. As revealed from the absorption spectra, absorption edge is not changed by the irradiation but the optical absorption is increased. Enhanced green luminescence at about 527 nm and a less intense blue emission peak around 460 nm were observed after irradiation with respect to the pristine ZnO/PMMA nanocomposite film.  相似文献   

8.
High resolution transmission electron microscopy, X-ray diffraction and photoluminescence measurements are carried out in order to study the defects in CdS quantum dots (QDs), synthesized in cubic phase by chemical co-precipitation method. The nanotwinning structures in CdS quantum dots (∼2.7 nm) are reported for the first time. Mostly CdS QDs are characterized by existence of nanotwin structures. The twinning structures are present together with stacking faults in some QDs while others exist with grain boundaries. Raman spectroscopy analysis shows intense and broad peaks corresponding to fundamental optical phonon mode (LO) and the first over tone mode (2LO) of CdS at 302 cm−1 and 605 cm−1 respectively. A noticeable shift is observed in Raman lines indicating the effect of phonon confinement. Fourier transform infrared spectroscopy analysis confirms the presence of Cd–S stretching bands at 661 cm−1 and 706 cm−1. The photoluminescence spectrum shows emission in yellow and red regions of visible spectrum. The presence of stacking faults and other defects are explained on the basis of X-rays diffraction patterns and are correlated with photoluminescence spectrum. These nanotwinning and microstructural defects are responsible for different emissions from CdS QDs.  相似文献   

9.
There is growing interest in materials chemistry for taking advantage of the physical and chemical properties of biomolecules in the development of next generation nanoscale materials for opto-electronic applications. A biomimetic approach to materials synthesis offers the possibility of controlling size, shape, crystal structure, orientation, and organization. The great progress has been made in the control that can be exerted over optical materials synthesis using biomolecules (protein, nucleic acid)/mineral interfaces as templates for directed synthesis. We have synthesized the CdS nanocrystals using pepsin by biomimetic technique at four different set temperatures. X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) results showed that we are able to tune the size and distribution profile just by tuning the reaction (Rx) temperature and goes towards excitonic Bhor radius (2.5 nm) at low temperature (4 °C). The narrow absorption peak at 260 nm from Cd2+-pepsin complex dominates and indicates the size dispersion of the modified CdS nanoparticles are fairly monodisperse. Effective mass approximation (EMA) shows large blue-shift (~1 eV) in the band gap for the cubic phase from bulk hexagonal CdS. The photoluminescence (PL) and photoluminescence excitation (PLE) spectra are dominated by a strong and narrow band-edge emission tunable in the blue region indicating a narrow size distribution. The reduction in PL efficiency is observed when the Rx temperature increases however no change in PLE spectra and temporal profiles of the band-edge PL is observed. At 4 °C, high emission efficiency with shift of PL spectrum in the violet region is observed for 1.7 nm size CdS quantum dots (QDs). Presence of pepsin has slowed the PL decay which is of the order of 100 μs.  相似文献   

10.
Carbosilane dendrimers with terminal allyl groups were synthesized and used to encapsulate the allyl derivative of fluorescein (allyl-FL) doped in PMMA. The optical property of this system was investigated and the results showed that the concentration of allyl-FL in PMMA could be increased to 4.5 wt% without decrease of the luminescence efficiency by adding the dendrimer into the system. The allyl-FL/dendrimer/PMMA film was embedded into a resonance cavity composed of two pieces of photonic band gap (PBG) materials to form a new-type solid-state laser. A laser emission at 589 nm was obtained when excited with a third harmonic generation (THG) of a pulsed Nd:YAG laser (355 nm) and its full-width at half-maximum of the spectrum was 1.7 nm.  相似文献   

11.
Al doped ZnO thin films are prepared by pulsed laser deposition on quartz substrate at substrate temperature 873 K under a background oxygen pressure of 0.02 mbar. The films are systematically analyzed using X-ray diffraction, atomic force microscopy, micro-Raman spectroscopy, UV-vis spectroscopy, photoluminescence spectroscopy, z-scan and temperature-dependent electrical resistivity measurements in the temperature range 70-300 K. XRD patterns show that all the films are well crystallized with hexagonal wurtzite structure with preferred orientation along (0 0 2) plane. Particle size calculations based on XRD analysis show that all the films are nanocrystalline in nature with the size of the quantum dots ranging from 8 to 17 nm. The presence of high frequency E2 mode and longitudinal optical A1 (LO) modes in the Raman spectra suggest a hexagonal wurtzite structure for the films. AFM analysis reveals the agglomerated growth mode in the doped films and it reduces the nucleation barrier of ZnO by Al doping. The 1% Al doped ZnO film presents high transmittance of ∼75% in the visible and near infrared region and low dc electrical resistivity of 5.94 × 10−6 Ω m. PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. Nonlinear optical measurements using the z-scan technique shows optical limiting behavior for the 5% Al doped ZnO film.  相似文献   

12.
Free-standing optoelectronic graphene–CdS–graphene oxide (G–CdS–GO) composite papers were prepared by vacuum-assisted self-assembly. G–CdS hybrids were first prepared by a hydrothermal method and GO acts as a dispersant which makes it easier to disperse them to form relatively stable aqueous suspensions for fabricating paper. Transmission electron microscopy shows that CdS quantum dots (QDs) with an average size of approximately 1–2 nm were distributed uniformly on the graphene sheets. Photoluminescence measurements for the as-prepared G–CdS–GO composite paper showed that the surface defect related emissions of attached CdS QDs decrease and blue shift obviously due to the change in particle size and the interaction of the surface of the CdS QDs with both the GO and the graphene sheets. The resulting paper holds great potential for applications in thin film solar cells, sensors, diodes, and so on.  相似文献   

13.
In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density (Jsc) and open circuit voltage (Voc) i.e. 99 μA/cm2 and 376 mV respectively, under 10 mW/cm2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.  相似文献   

14.
Pure and Mg doped CaF2 single crystals grown by the Bridgman method were irradiated with gamma rays (γ-rays) for doses ranging from 97 Gy to 9.72 KGy. The pristine samples showed minimal absorption indicating the purity of the samples. The γ-irradiated pure CaF2 crystals showed prominent and strong absorption with a peak at ~ 374 nm besides three weak ones at ~ 456, 523 and 623 nm. However γ-rayed Mg doped crystals showed a prominent absorption with a strong peak at ~ 370 nm and a broad one at ~ 530 nm. The absorption indicated the generation of F and F-aggregate centers in the irradiated crystals. The photoluminescence (PL) emission spectrum of both pure and Mg doped crystals showed prominent emission at ~ 390 nm when they were excited at ~ 250 nm. Also, when the samples were excited at 323 and 363 nm strong emissions were observed at ~ 430 and 422 nm respectively. The optical absorption and PL intensities were found to increase with increase in dose.  相似文献   

15.
TiO2 μ-donuts have been fabricated on glass and silicon substrates using polymer masks in combination with a sol-gel technique. Cylindrical poly(methyl methacrylate) (PMMA) nanopillars have been created using a composite polymer of polystyrene (PS) and PMMA followed by careful removal of the PS. Atomic force microscopy (AFM) analyses show that the height and diameter of the PMMA cylinders used as the mask are 440 ± 5 nm and 2.1 ± 0.2 μm, respectively. The cylindrical PMMA nanopillars have been coated with the sol of the TiO2 precursor by a spin coating technique and annealed in air at elevated temperature to remove the PMMA mask. Removal of the PMMA mask has resulted in the formation of well ordered μ-donuts of TiO2 on silicon surfaces. The interior and exterior heights of the TiO2 μ-donuts are found to be 373 ± 152 nm and 457 ± 136 nm, respectively; and the interior and exterior diameters of the TiO2 μ-donuts are found to be 1.33 ± 0.63 μm and 2.82 ± 0.50 μm, respectively. X-ray photoelectron spectroscopy (XPS) spectra of the TiO2 μ-donuts as well as the smooth TiO2 thin film showed signals from Ti and O confirming the presence of TiO2 with Ti 2p3/2 and O 1s peaks at 458.8 eV and 530.4 eV, respectively. The O 1s peak of the TiO2 μ-donuts shows another peak at binding energy 532.0 eV due to SiO2, as during annealing, the PMMA evaporates and the Si substrate is exposed. The X-ray diffractometer (XRD) pattern of the smooth TiO2 thin film indicates that the anatase phase is present, with the characteristic peaks observed at 2θ values of 25.4°, 37.4°, and 48° corresponding to (1 0 1), (0 0 4), and (2 0 0) planes, respectively. UV-vis absorption spectra of TiO2 μ-donuts on glass showed an unusual absorption of light in the visible region at ∼524 nm in addition to the usual UV absorption at ∼337 nm.  相似文献   

16.
Starch capped cadmium sulfide (CdS) nanoparticles were synthesized by aqueous solution precipitation. Starch added during the synthesis of nanoparticles resulted in cadmium-rich nanoparticles forming a stable complex with starch. The size of the CdS quantum dots was measured using high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The average diameter (d) of nanoparticles spanned the range 4.8 ± 0.4 to 5.7 ± 0.2 nm when the pH of the solution was varied within the range 10-14. The main Raman phonon of CdS, the longitudinal optical mode located around 300 cm−1, softens as diameter decreases, in accordance with theoretical predictions. In addition, the largest Raman response of starch, near 478 cm−1, related with the important skeletal vibration modes of the starch pyranose ring, dominates the spectra of the CdS capped nanoparticles and also softens as the size decreases. This fact indicates a strain variation on CdS as a function of d which increases as the pH increases.  相似文献   

17.
An efficient photoelectrode is fabricated by sequentially assembled CdS and CdSe quantum dots (QDs) onto a ZnO-nanowire film. As revealed by UV-vis absorption spectrum and scanning electron microscopy (SEM), CdS and CdSe QDs can be effectively adsorbed on ZnO-nanowire array. Electrochemical impedance spectroscopy (EIS) measured demonstrates that the electron lifetime for ZnO/CdS/CdSe (13.8 ms) is calculated longer than that of ZnO/CdS device (6.2 ms), which indicates that interface charge recombination rate is reduced by sensitizing CdSe QDs. With broader light absorption range and longer electron lifetime, a power conversion efficiency of 1.42% is achieved for ZnO based CdS/CdSe co-sensitized solar cell under the illumination of one Sun (AM 1.5G, 100 mW cm−2).  相似文献   

18.
A simple method for synthesis of well dispersed cadmium sulphide nanoparticles embedded in a polyethylene glycol matrix (PEG 400) in thin film form is presented. The large blue shift of the band gap energy of the CdS nanoparticles compared to the bulk semiconductors is observed via UV-vis absorption spectra. Photoluminescence spectra of CdS nanocomposite films show that the emission peaks shift towards the longer wavelength with the increase of annealing temperature. Transmission electron microscopic images as well as Raman scattering studies confirm the CdS nanometer size particle formation within the polymer matrix. The particle size is about 8 nm. Selected area electron diffraction (SAED) shows the cubic zinc blende polycrystalline rings. Third-order optical nonlinearity of the CdS nanopartieles embedded in polymer thin films is studied with the Z-scan technique under 1064 nm excitation. The results show that the CdS nanocomposite film exhibits negative nonlinear refraction index and positive absorption coefficient. The film shows large optical nonlinearity, and the magnitude of the third-order nonlinear susceptibility of the film is calculated to be 1.73 × 10^-9 esu. The corresponding mechanism is discussed.  相似文献   

19.
With 800-nm, 120-fs laser pulses, optical nonlinearity has been studied in a series of thin films containing poly(methyl methacrylate) (PMMA), filled with surfactant acetylacetone (Acac) capped TiO2 nanoparticles, which were synthesized by a simple in situ sol-gel/polymerization process, assisted by spin coating and multi-step baking. The resulting nanohybrid thin films have highly optical transparency and demonstrate a unique nonlinear optical (NLO) response. The highest nonlinear refractive index (n2) is observed up to 6.55 × 10−2 cm2 GW−1 in the nanohybrid thin film of 60 wt% Ti(OBu)4 in PMMA, with a negligible two-photon absorption (TPA), as confirmed by the Z-scan technique. The titanium precursor loading combined with the nature of the capping molecules are used to influence the ability of nanoparticles to nonlinear optical response. Indeed, the ligands at the nanoparticles’ surface can not only control the extent of the interaction between the organic molecules and the embedded nanoparticles but also influence the optical nonlinearities of nanoparticles.  相似文献   

20.
Undoped and Mg-doped ZnO thin films were deposited on Si(1 0 0) and quartz substrates by the sol-gel method. The thin films were annealed at 873 K for 60 min. Microstructure, surface topography and optical properties of the thin films have been measured by X-ray diffraction (XRD), atomic force microscope (AFM), UV-vis spectrophotometer, and fluorophotometer (FL), respectively. The XRD results show that the polycrystalline with hexagonal wurtzite structure are observed for the ZnO thin film with Mg:Zn = 0.0, 0.02, and 0.04, while a secondary phase of MgO is evolved for the thin film with Mg:Zn = 0.08. The ZnO:Mg-2% thin film exhibits high c-axis preferred orientation. AFM studies reveal that rms roughness of the thin films changes from 7.89 nm to 16.9 nm with increasing Mg concentrations. PL spectra show that the UV-violet emission band around 386-402 nm and the blue emission peak about 460 nm are observed. The optical band gap calculated from absorption spectra and the resistivity of the ZnO thin films increase with increasing Mg concentration. In addition, the effects of Mg concentrations on microstructure, surface topography, PL spectra and electrical properties are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号