首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new acylhydrazone copper(II) complexes of 4‐hydroxy‐N′‐[(1E)‐1‐(4‐methylphenyl)ethylidene]benzohydrazide (HL1) and 4 ethyl [4‐({(2E)‐2‐[1‐(4‐methylphenyl)ethylidene]hydrazinyl}carbonyl)phenoxy]acetate (HL2) have been synthesized and characterized. The structures of both acylhydrazone and copper(II) complexes were identified by elemental analysis, infrared spectra, UV–visible electronic absorption spectra, magnetic susceptibility measurements, TGA and powder X‐ray diffraction. DNA binding and DNA cleavage activities of the synthesized copper complexes were examined by using UV‐visible titration and agarose gel electrophoresis, respectively. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The results indicate that all the complexes bind slightly to calf thymus DNA and cleavage pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide‐derived species and singlet oxygen (1O2) are the active oxidative species for DNA cleavage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

3.
A series of dioxomolybdenum(VI) complexes with similar hydrazone ligands have been prepared, specifically [MoO2L1(MeOH)] (1), [MoO2L2(MeOH)] (2) and [MoO2L3(MeOH)] (3), where L1, L2 and L3 are the dianionic forms of 2-chloro-N′-(2-hydroxybenzylidene)benzohydrazide, 2-chloro-N′-(2-hydroxy-5-methylbenzylidene)benzohydrazide and N′-(3-bromo-5-chloro-2-hydroxybenzylidene)-2-chlorobenzohydrazide, respectively. The complexes were characterized by physicochemical and spectroscopic methods and also by single-crystal X-ray determination. The hydrazone ligands coordinate to the Mo atoms through their phenolate O, imine N and enolic O atoms. The Mo atoms are six-coordinated in octahedral geometries. The complexes show high catalytic activities and selectivities in the epoxidation of cyclohexene with tert-butylhydroperoxide as primary oxidant.  相似文献   

4.
Three Cd(II) or Co(II) macroacyclic Schiff-base complexes [CoL1Br]ClO4 (1), [CdL2Cl]ClO4 (2) and [CdL3(NO3)]ClO4 (3) were prepared by template condensation of 2-pyridinecarboxaldehyde and three different amines containing piperazine moiety, N,N′-bis(2-aminoethyl)piperazine, N,N′(2-aminoethyl)(3-aminopropyl)piperazine and N,N′-bis(3-aminopropyl)piperazine, in the presence of Co(II) or Cd(II) metal ions, respectively. All complexes have been studied with IR, FAB mass and microanalysis and for complex (3) by 1H and 13C NMR spectra. One of these complexes, [CdL3(NO3)]ClO4 (3) has been characterized through X-ray crystallography. In complex (3), the Cd(II) ion is coordinated by the six nitrogen donor atoms from the ligand and by one oxygen atom from a monodentate nitrate ion in a N6O environment.  相似文献   

5.
A series of chromium(III)-, cobalt(III)-, and iron(III)-based complexes of the general formula [(NO)2MCl] (1–7) (NO: N-salicylidene(R)amine, R = 1-naphthyl or cyclohexyl) have been applied as catalysts for the coupling reaction of carbon dioxide and epoxystyrene (styrene oxide) in the presence of tetrabutylammonium bromide (Bu4NBr) as a cocatalyst. The reactions were carried out under relatively low pressure and solvent-free conditions. In addition, iron complexes (810) containing the ligands, N′-(thiophene-2-methylene)benzene-1,2-diamine, (8), N′-(quinoline-2-methylene)benzene-1,2-diamine (9), and sodium N-(4-sulfonato-salicylidene)-1,2-phenylenediamine (10) were also utilized for the catalytic reaction. The influence of metal center, ligand, temperature, and reaction time on the coupling reaction was investigated. The catalyst systems proved to be selective in the coupling reaction of CO2 and styrene oxide, resulting in cyclic styrene carbonate. In general, the iron(III)- and cobalt(III)-based catalysts bearing the aromatic 1-naphthyl terminal groups showed the highest catalytic activity under similar reaction conditions.  相似文献   

6.
A new Schiff base N-[(E)-(2-hydroxyphenyl)methylidene]-N’-[(Z)-(2-hydroxyphenyl)methylidene]ethanebis(thioamide) (LC) containing sulfur, nitrogen, and oxygen atoms has been synthesized by condensation of ethanebis(thioamide) with 2-hydroxybenzaldehyde. Metal complexes were synthesized by reaction of the new ligand with copper(II) and cobalt(II) as nitrate salts and with rhodium(III) as chloride salt, using hot absolute ethanol as solvent. All the new compounds were characterized by use of different physicochemical techniques including UV–visible spectroscopy, magnetic susceptibility, IR spectroscopy, molar conductance, and determination of metal content. It is proposed the paramagnetic copper and cobalt complexes adopt octahedral geometry whereas the diamagnetic rhodium complex has octahedral geometry.  相似文献   

7.
A new Schiff base, {1-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-4-phenyl-2-thioxo-1, 2-dihydro-pyrimidin-5-yl}-phenyl-methanone, has been synthesized from N-amino pyrimidine-2-thione and 2-hydroxynaphthaldehyde. Metal complexes of the Schiff base were prepared from acetate/chloride salts of Cu(II), Co(II), Ni(II), Zn(II), and Cd(II) in methanol. The chemical structures of the Schiff-base ligand and its metal complexes were confirmed by elemental analyses, IR, 13C-NMR, 1H-NMR, API-ES, UV-Visible spectroscopy, magnetic susceptibility, and thermogravimetric analyses. The electronic spectral data and magnetic moment measurements suggest mononuclear octahedral and mononuclear or binuclear square planar structures for the metal complexes. In light of these results, it was suggested that this ligand coordinates to each metal atom by hydroxyl oxygen, azomethine nitrogen, and thione sulfur to form octahedral complexes with Cd(II) and Zn(II).  相似文献   

8.
A series of polymeric cobalt(II), nickel(II), zinc(II) and cadmium(II) azido complexes with hydrazine of the type [M(N2H4)(H2O)(N3)Cl]n, [M(N2H4)(N3)2]n and [M(N2H4)2(N3)2]n have been prepared. These were characterized by elemental analyses, magnetic susceptibility measurements, electronic and IR spectra. The complexes are highly insoluble in polar and non polar solvents. All the complexes decompose with explosion at different temperatures between 100°C to 200°C. The magnetic moment and electronic spectral data for Co(II) and Ni(II) complexes suggest that the complexes have octahedral structure. The ligand-field parameters (10 Dq, B, β, β° and LFSE) have also been calculated for all Co(II) and Ni(II) complexes which indicate a significant covalent character of M-L bonds. The IR spectra of the complexes show that the azide group and hydrazine molecule both act as bidentate bridging ligands in [M(N2H4)(H2O)(N3)Cl]n and [M(N2H4)(N3)2]n type complexes but the azide group is terminally bonded to metal in all [M(N2H4)2(N3)2]n type complexes.  相似文献   

9.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

10.
Two new isostructural methoxide-bridged dimeric oxovanadium(V) complexes [VO(L1)(OMe)]2 (1) and [VO(L2)(OMe)]2 (2), where L1 and L2 are the deprotonated forms of 3-bromo-N′-[1-(2-hydroxyphenyl)×ethylidene]benzohydrazide (H2L1) and 3-chloro-N′-[1-(2-hydroxyphenyl)ethylidene]benzohydrazide (H2L2) respectively, are synthesized and characterized by elemental analyses, IR spectra, and single crystal X-ray determination. Both crystals crystallize in the triclinic space group P-1. For 1, a = 7.5237(15) Å, b = 10.846(3) Å, c = 11.195(3) Å, α = 84.143(3)°, β = 72.244(3)°, γ = 77.869(3)°, V = 849.9(4) Å3, Z = 1, R 1 = 0.0634, wR 2 = 0.1373. For 2, a = 7.493(2) Å, b = 10.740(3) Å, c = 11.109(3) Å, α = 84.569(2)°, β = 71.783(2)°, γ = 79.822(2)°, V = 835.0(4) Å3, Z = 1, R 1 = 0.0511, wR 2 = 0.1076. Each V atom in the complexes is octahedrally coordinated.  相似文献   

11.
The title compounds, bis­(di­methyl­form­amide)‐1κO,3κO‐bis{μ‐2,2′‐[2,2′‐di­methyl­propane‐1,3‐diyl­bis­(nitrilo­methylidyne)]­diphenolato}‐1κ4N,N′,O,O′:2κ2O,O′;2κ2O,O′:3κ4N,N′,O,O′‐di‐μ‐nitrito‐1:2κ2N:O;2:3κ2O:N‐dinickel(II)­cobalt(II), [CoNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (I), ‐copper(II), [CuNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (II), and ‐manganese(II), [MnNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (III), consist of centrosymmetric linear heterotrinuclear metal complexes. The three complexes are isostructural. There are three bridges across the Ni–M atom pairs (M is Co2+, Cu2+ or Mn2+) in each complex, involving two O atoms of a μ‐N,N′‐bis­(salicyl­idene)‐2,2′di­methyl‐1,3‐propane­diaminate ligand and an N—O moiety of a μ‐nitrito group. The coordination sphere around each metal atom, whether Co2+, Cu2+, Mn2+ or Ni2+, can be described as distorted octahedral. The Ni?M distances are 2.9988 (5) Å in (I), 2.9872 (5) Å in (II) and 3.0624 (8) Å in (III).  相似文献   

12.
Two new oxovanadium(V) complexes, [VOL1(SHA)] (I) and [VOL2(BHA)] (II), were prepared by the reaction of [VO(Acac)2] (Acac = acetylacetonate) with N′-(2-hydroxybenzylidene)isonicotinohydrazide (H2L1) and salicylhydroxamic acid (HSHA) and 4-chloro-N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (H2L2) and benzohydroxamic acid (HBHA), respectively, in methanol. Crystal and molecular structures of the complexes were determined by elemental analysis, infrared spectra and single crystal X-ray diffraction (CIF file CCDC nos. 978238 (I) and 978392 (II)). The V atoms are in octahedral coordination. Thermal stability and the inhibition of urease of the complexes were studied.  相似文献   

13.
Nickel(II) and copper(II) complexes of two unsymmetrical tetradentate Schiff base ligands [Ni(Me-salabza)] (1), [Cu(Me-salabza)] (2) and [Ni(salabza)] (3), {H2salabza = N,N′-bis[(salicylidene)-2-aminobenzylamine] and H2Me-salabza = N,N′-bis[(methylsalicylidene)-2-aminobenzylamine]}, have been synthesized and characterized by elemental analysis and spectroscopic methods. The crystal structures of 2 and 3 complexes have been determined by single crystal X-ray diffraction. Both copper(II) and nickel(II) ions adopt a distorted square planar geometry in [Cu(Me-salabza)] and [Ni(salabza)] complexes. The cyclic voltammetric studies of these complexes in dichloromethane indicate the electronic effects of the methyl groups on redox potential.  相似文献   

14.
Piperidine-, morpholine-4-, N-methylpiperazine-4- and thiornorpholine-4-carbodithioate complexes of chromium(III), manganese(III), tin(II) and lead(II) are prepared and characterized by chemical analyses, spectroscopic methods (I.R. and electronic spectra), magnetic susceptibilities, conductivity measurements and mass spectra. The complexes are of the type M(R2dtc)n, where n is the oxidation number of the metal ion. Where possible a tentative stereochemistry of the complexes is discussed on the basis of the results obtained. In all the complexes the dithiocarbamate ligands show bidentate behaviour.  相似文献   

15.
Chiral nickel(II), zinc(II), manganese(II), and cobalt(II) complexes with C 2-symmetric 2,6-bis[4′-(R)-ethoxyoxazolin-2′-yl]pyridine were prepared, the single crystal of nickel(II) complex, [Ni((R,R)-Et-Py-box)(H2O)2Cl]Cl ((R,R)-Et-Pybox is 2,6-bis[4′-(R)-ethoxyoxazolin-2′-yl]pyridine), was obtained and indicated by X-ray diffraction analysis. The nickel(II) complex crystallizes in the orthorhombic system, space group P212121 with a = 7.7346(4) Å, b = 19.7133(13) Å, c = 25.8014(14) Å, V = 3934.1(4) Å3, Z = 8, and R = 0.0526 against 7010 reflections with I > 2σ (I). A feature of interest was noted in the unit cell of the compound, where two types of molecules exist, which similarly have a distorted octahedral geometry but only slightly differ in the orientation of the coordinated atoms to the central Ni atom. These two types of molecules interact with each other by O-H…Cl hydrogen bonds, giving rise to one dimensional ribbon structure.  相似文献   

16.
Ammonium[N(o-chlorophenyl)dithiocarbamate], NH4(OCD), ammonium [N(m-chlorophenyl)dithiocarbamate], NH4(MCD) and ammonium [N(p-chlorophenyl)dithiocarbamate], NH4(PCD) and their complexes with Cu(II), Zn(II), Cd(II) and Sn(II) have been synthesised. These complexes have been characterised on the basis of chemical analyses, molecular weight determinations, conductance measurements, electronic and IR spectral studies. Thermal behaviour of the compounds has been studied with the aid of TG and DTA techniques in static air atmosphere. Heats of reaction for different decomposition steps have been calculated from the DTA curves. The end products obtained after thermal decomposition of the complexes were identified by elemental analyses and IR spectral data.  相似文献   

17.
This paper reports on the synthesis and characterization of two new polypyridyl-hydrazone Schiff bases, (E)-N′-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)thiophene-2-carbohydrazide (L1) and (E)-N′-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)furan-2-carbohydrazide (L2), and their two Ru(II) complexes of the general formula [RuCl(DMSO)(phen)(Ln)](PF6). Considering that hydrazides are a structural part of severa l drugs and metal complexes containing phenanthroline derivatives are known to interact with DNA and to exhibit antitumor activity, more potent anticancer agents can be obtained by covalently linking the thiophene acid hydrazide or the furoic acid hydrazide to a 1,10-phenanthroline moiety. These ligands and the Ru(II) complexes were characterized by elemental analyses, electronic, vibrational, 1H NMR, and ESI-MS spectroscopies. Ru is bound to two different N-heterocyclic ligands. One chloride and one S-bonded DMSO in cis-configuration to each other complete the octahedral coordination sphere around the metal ion. The ligands are very effective in inhibiting cellular growth in a chronic myelogenous leukemia cell line, K562. Both complexes are able to interact with DNA and present moderate cytotoxic activity, but 5 min of UV-light exposure increases cytotoxicity by three times.  相似文献   

18.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

19.
Four new heterometallic Cu(II)/Cr(III) complexes with N,N-dimethylethylenediamine (dmen) and its novel Schiff-base derivatives, N′-[(1Z)-3-amino-1,3-dimethylbutylidene]-N,N-dimethylethane-1,2-diamine (dmenac) and N′-((1Z)-3-{[2-(dimethylamino)ethyl]amino}-1,3-dimethylbutylidene)-N,N-dimethylethane-1,2-diamine (dmen2ac), have been easily prepared by self-assembly and characterized by spectroscopic methods and single crystal X-ray analysis. The structures of all the complexes are assisted by numerous hydrogen bonds that provide a web of interactions and mould the supramolecular architectures of the compounds. Variable-temperature (1.8–300 K) magnetic susceptibility measurements reveal Curie-Weiss paramagnetic behavior of all the compounds, supported by EPR studies.  相似文献   

20.
Chiral Schiff base complexes containing azo-groups, bis(N-R-1-cyclohexylethyl-4-phenyldiazenylsalicydenaminato) nickel(II), copper(II) and zinc(II) complexes, and without azo-groups, bis(N-R-1-cyclohexylethyl-3,5-dichlorosalicydenaminato) nickel(II), copper(II) and zinc(II) complexes, affording a distorted square planar trans-[MN2O2] coordination geometry were prepared. Organic/inorganic hybrid materials in polymethylmethacrylate (PMMA) spincoat films of the complexes (both the azobenzene (AZ) containing type and the latter complexes of the AZ separated type) were assembled for a comparison of polarized UV light induced molecular arrangement caused by the Weigert effect. Investigation of the parameters for the optical anisotropy of the metal complexes as well as AZ suggested that the degree of increasing optical anisotropy of the containing type was higher than that of the separated type based on π-π (of which a characteristic band appeared around 380 nm) and n-π bands of polarized absorption electronic spectra. In the AZ containing type, the rigid nickel(II) or zinc(II) complexes easily increase the optical anisotropy compared to the flexible copper(II) complexes. In the AZ separated type, interestingly, enhancement of some CD bands suggests the role of chiral dopants of some complexes without azo-groups for AZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号