首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novobiocin is a member of the coumermycin family of antibiotics and is a well-established inhibitor of DNA gyrase. Recent studies have shown that novobiocin binds to a previously unrecognized ATP-binding site at the C-terminus of Hsp90 and induces degradation of Hsp90-dependent client proteins at approximately 700 microM. In an effort to develop more efficacious inhibitors of the C-terminal binding site, a library of novobiocin analogues was prepared and initial structure-activity relationships revealed. These data suggested that the 4-hydroxy moiety of the coumarin ring and the 3'-carbamate of the noviose appendage were detrimental to Hsp90 inhibitory activity. In an effort to confirm these findings, 4-deshydroxy novobiocin (DHN1) and 3'-descarbamoyl-4-deshydroxynovobiocin (DHN2) were prepared and evaluated against Hsp90. Both compounds were significantly more potent than the natural product, and DHN2 proved to be more active than DHN1. In an effort to determine whether these moieties are important for DNA gyrase inhibition, these compounds were tested for their ability to inhibit DNA gyrase and found to exhibit significant reduction in gyrase activity. Thus, we have established the first set of compounds that clearly differentiate between the C-terminus of Hsp90 and DNA gyrase, converted a well-established gyrase inhibitor into a selective Hsp90 inhibitor, and confirmed essential structure-activity relationships for the coumermycin family of antibiotics.  相似文献   

2.
The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding and/or trafficking of ∼400 client proteins, many of which are directly associated with cancer progression. Consequently, inhibition of Hsp90 can exhibit similar activity as combination therapy as multiple signaling nodes can be targeted simultaneously. In fact, seventeen small-molecule inhibitors that bind the Hsp90 N-terminus entered clinical trials for the treatment of cancer, all of which exhibited pan-inhibitory activity against all four Hsp90 isoforms. Unfortunately, most demonstrated undesired effects alongside induction of the pro-survival heat shock response. As a result, isoform-selective inhibitors have been sought to overcome these detriments. Described herein is a structure-based approach to design Hsp90β-selective inhibitors along with preliminary SAR. In the end, compound 5 was shown to manifest ∼370-fold selectivity for Hsp90β versus Hsp90α, and induced the degradation of select Hsp90β-dependent clients. These data support the development of Hsp90β-selective inhibitors as a new paradigm to overcome the detriments associated with pan-inhibition of Hsp90.  相似文献   

3.
Development of heat shock protein 90 (Hsp90) C‐terminal inhibitors has emerged as an exciting strategy for the treatment of cancer. Previous efforts have focused on modifications to the natural products novobiocin and coumermycin. Moreover, variations in both the sugar and amide moieties have been extensively studied, whereas replacements for the coumarin core have received less attention. Herein, 24 cores were synthesized with varying distances and angles between the sugar and amide moieties. Compounds that exhibited good anti‐proliferative activity against multiple cancer cell lines and Hsp90 inhibitory activity, were those that placed the sugar and amide moieties between 7.7 and 12.1 Å apart along with angles of 180°.  相似文献   

4.
The DNA gyrase inhibitor, novobiocin, was recently shown to inhibit Hsp90 via a previously unrecognized C-terminal ATP-binding site. Previous structure-activity relationship studies identified key moieties that appear important for Hsp90 inhibitory activity. In an effort to provide a more efficacious lead compound, a parallel library of noviosylated coumarin analogues was prepared.  相似文献   

5.
Heat shock protein 90 (Hsp90) is a potential oncogenic target. However, Hsp90 inhibitors in clinical trial induce heat shock response, resulting in drug resistance and inefficiency. In this study, we designed and synthesized a series of novel triazine derivatives ( A1 - 26 , B1 - 13 , C1 - 23 ) as Hsp90 inhibitors. Compound A14 directly bound to Hsp90 in a different manner from traditional Hsp90 inhibitors, and degraded client proteins, but did not induce the concomitant activation of Hsp72. Importantly, A14 exhibited the most potent anti-proliferation ability by inducing autophagy, with the IC50 values of 0.1 μM and 0.4 μM in A549 and SK-BR-3 cell lines, respectively. The in vivo study demonstrated that A14 could induce autophagy and degrade Hsp90 client proteins in tumor tissues, and exhibit anti-tumor activity in A549 lung cancer xenografts. Therefore, the compound A14 with potent antitumor activity and unique pharmacological characteristics is a novel Hsp90 inhibitor for developing anticancer agent without heat shock response.  相似文献   

6.
Novobiocin, a known DNA gyrase inhibitor, binds to a nucleotide-binding site located on the Hsp90 C-terminus and induces degradation of Hsp90-dependent client proteins at approximately 700 microM in breast cancer cells (SKBr3). Although many analogues of novobiocin have been synthesized, it was only recently demonstrated that monomeric species exhibit antiproliferative activity against various cancer cell lines. To further refine the essential elements of the coumarin core, a series of modified coumarin derivatives was synthesized and evaluated to elucidate structure-activity relationships for novobiocin as an anticancer agent. Results obtained from these studies have produced novobiocin analogues that manifest low micromolar activity against several cancer cell lines.  相似文献   

7.
Recent studies have shown that the DNA gyrase inhibitor, novobiocin, binds to a previously unrecognized ATP-binding site located at the C-terminus of Hsp90 and induces degradation of Hsp90-dependent client proteins at approximately 700 microM. As a result of these studies, several analogues of the coumarin family of antibiotics have been reported and shown to exhibit increased Hsp90 inhibitory activity; however, the monomeric species lacked the ability to manifest anti-proliferative activity against cancer cell lines at concentrations tested. In an effort to develop more efficacious compounds that produce growth inhibitory activity against cancer cell lines, structure-activity relationships were investigated surrounding the prenylated benzamide side chain of the natural product. Results obtained from these studies have produced the first novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines.  相似文献   

8.
As Hsp90 has emerged as a promising target for the development of cancer chemotherapeutics, so has the need for systematic evaluation of structure-activity relationships between natural product inhibitors and this molecular chaperone. Utilizing our chimera approach, which encompasses the quinone moiety of geldanamycin and the resorcinol moiety of radicicol, molecules have been produced that are highly effective inhibitors of the Hsp90 protein folding machinery. These chimeric inhibitors contain metacyclophane macrolactams that are difficult to cyclize and modify for incorporation of functional diversity. To circumvent this problem, a highly diversifiable α-bromo-α,β-unsaturated ester has been prepared, which allows for the introduction of various functionalities that enable elucidation of structure-activity relationships between chimeric compounds and Hsp90. The rationale, synthesis, and optimization for such a molecule is reported herein.  相似文献   

9.
The identification of inhibitors of Hsp90 is currently a primary goal in the development of more effective drugs for the treatment of various types of multidrug resistant malignancies. In an attempt to identify new small molecules modulating the activity of Hsp90, we screened a small library of tetranortriterpenes. A high‐affinity interaction with Hsp90 inducible form was uncovered for eight of these compounds, five of which are described here for the first time. By monitoring the ATPase activity and the citrate synthase thermal induced aggregation, compound 1 (cedrelosin A), 3 (7α‐limonylacetate), and 5 (cedrelosin B), containing a limonol moiety, were found to be the most effective in compromising the Hsp90α chaperone activity. Consistent with these findings, the three compounds caused a depletion of c‐Raf and pAkt Hsp90 client proteins in HeLa and MCF/7 cell lines. Induced fit docking protocol and molecular dynamics were used to rationalize the structural basis of the biological activity of the limonol derivatives. Taken together, these results point to limonol‐derivatives as promising scaffolds for the design of novel Hsp90α inhibitors.  相似文献   

10.
Simplified aminocoumarin analogues,either noviosylated or simple basic heterocycle attached 3-amido-coumarin compounds,are known to be promising anticancer agents targeting the C-terminal ATP-binding site of Hsp90.In this study,3’-amino isosteric replacement in the noviose moiety of two known noviose containing Hsp90 C-terminal inhibitors was synthetically realized for the first time.In vitro evaluation of these compounds suggested that the introduction of a basic amino group into the noviose subunit resulted in significant improvement of their cytotoxicities.  相似文献   

11.
Ginkgo biloba L. has been used in traditional Chinese medicine (TCM) for thousands of years. However, the anti-cancer properties of ginkgolic acids (GAS) isolated from G. biloba have not been investigated in human nasopharyngeal carcinoma cells. In this study, GAS exhibited an inhibitory effect on the ATPase activity of heat shock protein 90 (Hsp90) and anti-proliferative activities against four human cancer cell lines, with IC50 values ranging from 14.91 to 23.81 μg·mL−1. In vivo experiments confirmed that GAS inhibited tumor growth in CNE-2Z cell-xenografted nude mice with low hepatotoxicity. We further demonstrated that GAS suppressed migration and invasion and induced the apoptosis of CNE-2Z cells by inducing the degradation of Hsp90 client proteins (MMP-2, MMP-9, Her-2, c-Raf, Akt, and Bcl-2). Together, GAS are new Hsp90 inhibitors by binding to Hsp90 (hydrogen bond and hydrophobic interaction). Thus, GAS from G. biloba might represent promising Hsp90 inhibitors for the development of anti-nasopharyngeal carcinoma agents.  相似文献   

12.
Heat shock protein 90 (Hsp90) is a molecular chaperone (90 kDa) that functions as a dimer. This protein facilitates the folding, assembly, and stabilization of more than 400 proteins that are responsible for cancer development and progression. Inhibiting Hsp90’s function will shut down multiple cancer‐driven pathways simultaneously because oncogenic clients rely heavily on Hsp90, which makes this chaperone a promising anticancer target. Classical inhibitors that block the binding of adenine triphosphate (ATP) to the N‐terminus of Hsp90 are highly toxic to cells and trigger a resistance mechanism within cells. This resistance mechanism comprises a large increase in prosurvival proteins, namely, heat shock protein 70 (Hsp70), heat shock protein 27 (Hsp27), and heat shock factor 1 (HSF‐1). Molecules that modulate the C‐terminus of Hsp90 are effective at inducing cancer‐cell death without activating the resistance mechanism. Herein, we describe the design, synthesis, and biological binding affinity for a series of dimerized C‐terminal Hsp90 modulators. We show that dimers of these C‐terminal modulators synergistically inhibit Hsp90 relative to monomers.  相似文献   

13.
Agents that inhibit Hsp90 function hold significant promise in cancer therapy. Here we present PU24FCl, a representative of the first class of designed Hsp90 inhibitors. By specifically and potently inhibiting tumor Hsp90, PU24FCl exhibits wide-ranging anti-cancer activities that occur at similar doses in all tested tumor types. Normal cells are 10- to 50-fold more resistant to these effects. Its Hsp90 inhibition results in multiple anti-tumor-specific effects, such as degradation of Hsp90-client proteins involved in cell growth, survival, and specific transformation, inhibition of cancer cell growth, delay of cell cycle progression, induction of morphological and functional changes, and apoptosis. In concordance with its higher affinity for tumor Hsp90, in vivo PU24FCl accumulates in tumors while being rapidly cleared from normal tissue. Concentrations achieved in vivo in tumors lead to single-agent anti-tumor activity at non-toxic doses.  相似文献   

14.
Heat shock protein 90 (Hsp90) represents a promising therapeutic target for the treatment of cancer and other diseases. Unfortunately, results from clinical trials have been disappointing as off-target effects and toxicities have been observed. These detriments may be a consequence of pan-Hsp90 inhibition, as all clinically evaluated Hsp90 inhibitors simultaneously disrupt all four human Hsp90 isoforms. Using a structure-based approach, we designed an inhibitor of Grp94, the ER-resident Hsp90. The effect manifested by compound 2 on several Grp94 and Hsp90α/β (cytosolic isoforms) clients were investigated. Compound 2 prevented intracellular trafficking of the Toll receptor, inhibited the secretion of IGF-II, affected the conformation of Grp94, and suppressed Drosophila larval growth, all Grp94-dependent processes. In contrast, compound 2 had no effect on cell viability or cytosolic Hsp90α/β client proteins at similar concentrations. The design, synthesis, and evaluation of 2 are described herein.  相似文献   

15.
Inhibition of the 90 kDa heat shock proteins (Hsp90) represents a promising new chemotherapeutic approach for the treatment of several cancers. Hsp90 is essential to the survival of cancer cells and is inhibited by members of the ansamycin family of antibiotics. In particular, the quinone-containing antibiotics geldanamycin (GDA) and herbimycin A inhibit Hsp90 function in vitro at low micromolar concentrations via interaction with an ATP binding domain. Many proteins bind ATP, and the discovery of selective Hsp90 inhibitors requires the identification of other proteins that bind GDA and may cause undesired effects. Biotinylated analogues of GDA with varying tether lengths have been synthesized to elucidate other proteins that competitively bind GDA. Analogues containing a photolabile tether have also been prepared as a complementary method for the removal of GDA-bound proteins from neutravidin-containing resin. Preliminary studies indicate several proteins other than Hsp90 are isolated with biotinylated GDA.  相似文献   

16.
The molecular chaperone Hsp90 undergoes an ATP‐driven cycle of conformational changes in which large structural rearrangements precede ATP hydrolysis. Well‐established small‐molecule inhibitors of Hsp90 compete with ATP‐binding. We wondered whether compounds exist that can accelerate the conformational cycle. In a FRET‐based screen reporting on conformational rearrangements in Hsp90 we identified compounds. We elucidated their mode of action and showed that they can overcome the intrinsic inhibition in Hsp90 which prevents these rearrangements. The mode of action is similar to that of the co‐chaperone Aha1 which accelerates the Hsp90 ATPase. However, while the two identified compounds influence conformational changes, they target different aspects of the structural transitions. Also, the binding site determined by NMR spectroscopy is distinct. This study demonstrates that small molecules are capable of triggering specific rate‐limiting transitions in Hsp90 by mechanisms similar to those in protein cofactors.  相似文献   

17.
Inhibition of the 90 kDa heat shock protein (Hsp90) family of molecular chaperones represents a promising new chemotherapeutic approach toward the treatment of several cancers. Previous studies have demonstrated that the natural products, radicicol and geldanamycin, are potent inhibitors of the Hsp90 N-terminal ATP binding site. The cocrystal structures of these molecules bound to Hsp90 have been determined, and through molecular modeling and superimposition of these ligands, hybrids of radicicol and geldanamycin have been designed. A series of macrocylic chimeras of radicicol and geldanamycin and the corresponding seco-agents have been prepared and evaluated for both antiproliferative activity and their ability to induce Hsp90-dependent client protein degradation.  相似文献   

18.
Shen G  Blagg BS 《Organic letters》2005,7(11):2157-2160
[reaction: see text]. The antitumor antibiotics radicicol and geldanamycin are potent inhibitors of the Hsp90 protein folding machinery. Radester is a hybrid composed of radicicol's resorcinol ring and geldanamycin's quinone through an isopropyl ester. Radester was prepared, and the cytotoxicity of it and the corresponding hydroquinone were determined in MCF-7 breast cancer cells to be 13.9 and 7.1 microM, respectively. Protein degradation assays were performed on Hsp90-dependent client proteins, Her-2 and Raf, to correlate Hsp90 inhibition to cytotoxicity.  相似文献   

19.
Hsp90 is a cytosolic molecular chaperone whose paralog in mitochondria, TRAP1, protects cells from oxidative stress. The recent study in Cell by Kang et al. now identifies the molecular components of the proapoptotic network regulated by TRAP1, that includes Hsp90. Targeting Hsp90/TRAP1 inhibitors to mitochondria induces rapid tumor cell-specific apoptosis.  相似文献   

20.
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone responsible for protein quality control in cells. Hsp90 has been shown to be overexpressed in many human cancers. This has prompted extensive research on Hsp90 inhibitors as novel anticancer agents and, more recently, the development of molecular probes for imaging Hsp90 expression in vivo. This work describes the development of various fluorine-containing and rhenium-containing geldanamycin derivatives as leads for the development of corresponding (18)F-labeled and (99m)Tc-labeled PET and SPECT probes for molecular imaging of Hsp90 expression. All compounds were evaluated in an in vitro ATPase activity assay using Hsp90 isoform Hsp82p. Fluorobenzoylated geldanamycin derivative 5 displayed comparable inhibitory potency like parent compound geldanamycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号