首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
剪切湍流大尺度相干结构的模式研究   总被引:3,自引:0,他引:3  
发展了一种计算剪切湍流大尺度相干结构的新模式.该模式的基础是认为大尺度相干结构为湍流场中流体脉动能量增长最快的那部分,且包含大部分的湍流脉动能量.在此基础上。通过对湍流相干能量方程的推演。建立了描述大尺度相干结构的特征控制方程,并应用Chebyshev多项式方法求得湍流相干能量的最大增长率在波数空间的分布,从而获得对应的大尺度相干结构.应用该模式研究了槽流和一自然对流中的大尺度相干结构,得到的近壁区流动结构与实验现象十分接近.  相似文献   

2.
两个角区湍流场及其尾迹的实验研究   总被引:1,自引:0,他引:1  
绕两个翼型-平面的角区流动及其尾迹的实验是在低湍流度风洞中完成的.在零攻角条件下,对翼型-平面的角区流场内诸参数,如翼型表面和平板面上的压力分布、绕翼型及尾迹区内的平均速度、脉动速度、湍动能、二阶关联量u′v′及u′w′进行了广泛的测量.通过对比,分析了这两种模型与平面所构成的角区及其尾迹区内的流动特性  相似文献   

3.
在研究紊流边界层的过程中,本文考虑了分子粘性对紊流产生的作用、雷诺数以及壁面附近脉动动能的耗散不是各向同性对紊流产生的影响,采用Jones-Launder模型对管内紊流流动边界层厚度、边界层内的脉动动能K,动能耗散ε,管壁切应力τ0以及由此可得的管内流动摩擦阻力系数λ进行了数值计算,计算结果与实验值、理论计算值得具有较好的一致性。  相似文献   

4.
《力学学报》2012,44(4)
采用五阶有限差分WENO格式直接模拟了高初始湍流Mach数的可压缩均匀各向同性湍流,主要分析了湍流的统计特性和压缩性的影响,包括能谱特征、激波串、耗散率、标度律等.研究表明,湍动能主要来自于速度场螺旋分量的贡献;各向同性湍流的小尺度脉动对压缩性更为敏感,并且压缩性的增强加快了湍流大尺度脉动向小尺度脉动的湍动能输运;随着湍流Mach数的升高,胀量(压缩)耗散率所占比率也显著增长.标度律分析表明,强可压缩湍流的横向速度结构函数仍然具有扩展自相似性;当阶数较高(p≥5)时,纵向速度结构函数的扩展自相似性则不再成立.对于压缩性较弱的湍流,与不可压缩湍流一致,横向湍流脉动的间歇性要强于纵向湍流脉动;而对于强可压缩湍流,纵向湍流脉动的间歇性要强于横向湍流脉动.  相似文献   

5.
湍流边界层等动量区演化机理的实验研究   总被引:1,自引:0,他引:1  
等动量区是瞬时流场中流体动量接近的局部区域,其生成和分布与相干结构密切相关. 对等动量区的研究有助于更深入认识湍流边界层相干结构,但目前对其演化过程还缺乏实验支持和机理分析. 设计并使用移动式高时间分辨率粒子图像测速技术(TRPIV)系统对光滑平板湍流边界层进行了跟踪测量,用滤波方式对数据进行降噪,结合对直接数值模拟数据的插值结果,获得脉动速度信号. 使用改进方法去掉非湍流的影响,检测边界层内的等动量区,得到其数量的时间序列,结合流向速度概率密度函数分布的变化,分析得出了等动量区的数量在大的时间尺度下从一个稳态到另一个稳态的阶梯状变化特点. 分解不同尺度的脉动速度,对大尺度和小尺度脉动信号进行条件平均,发现大尺度脉动对等动量区数量变化起主要作用,表现为不同速度流体通过发生不同猝发事件改变流向速度概率密度函数分布. 分析流向大尺度脉动空间分布的变化,发现等动量区内常含有多个大尺度脉动区域,不同区域的扩张、收缩、分裂、合并影响流向速度的集中程度,进而导致等动量区数量的变化.   相似文献   

6.
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160 Hz),使用单丝边界层探针对压电振子自由端下游2 mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果.  相似文献   

7.
颗粒在大涡结构中的弥散   总被引:5,自引:0,他引:5  
王兵  张会强  王希麟 《力学学报》2005,37(1):105-109
气相采用大涡模拟方法,颗粒相采用轨道模型研究了三维后台阶气粒两相湍流流动的大尺度涡结构的瞬时演变过程以及颗粒的瞬时弥散规律.比较了不同入流速度的颗粒在大涡结构中的瞬时弥散特性,尤其研究了高速释放大颗粒的弥散特性.三维流动中大尺度涡结构具有明显的脱离、发展、合并和破碎过程.小颗粒的分布受大涡结构的控制,其空间的弥散过程与流体 大涡结构的空间发展相一致,但是由于三维流动中大涡边缘和中心区的压力差,颗粒在大尺度 涡的边缘出现密集.而大颗粒在流场中的分布受其惯性控制,对气相的涡结构不敏感.高速释放到流场中的大颗粒受惯性影响最大,保持在其原有动量方向上运动.  相似文献   

8.
壁湍流边界层奇异标度律的实验研究   总被引:3,自引:0,他引:3  
夏振炎  姜楠  王振东  舒玮 《实验力学》2005,20(4):532-538
采用热线风速仪对平板湍流边界层的流向速度进行测量,用速度结构函数研究不同尺度结构标度律的变化规律,结果显示小尺度区的概率密度曲线尾部明显偏离高斯型,说明高幅值间歇性事件占的份额较多;惯性子区的曲线向高斯型靠近,间歇性事件所占份额减少;大尺度结构的曲线趋于高斯型,间歇性事件所占份额最小。在耗散区、惯性子区和较大的尺度结构区存在大小不同的绝对标度指数,越靠近壁面这些区域的标度指数均越偏离p/3而逐渐变小。绝对标度指数与边界层位置有关,在缓冲层各阶标度指数与线性标度律偏差很大,显示较强的奇异性,当过渡到对数层及外区,标度指数逐渐增大,接近均匀各向同性湍流的状态。缓冲层、对数层及外区具有各异的绝对标度指数增长率,与各层的不同湍流结构特征和运动形式有关。  相似文献   

9.
减阻工况下壁面周期扰动对湍流边界层多尺度的影响   总被引:1,自引:0,他引:1  
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160Hz),使用单丝边界层探针对压电振子自由端下游2mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果.   相似文献   

10.
在中航气动院FL-9低速风洞中,进行了飞艇尾翼脉动压力特性实验研究。测量了尾翼的脉动压力,着重分析了各测量点的脉动压力系数、频谱和相关性系数等特性。结果表明:脉动压力系数由尾翼前缘向后缘逐渐增大。尾翼的中部和前缘脉动压力系数随迎角无明显变化,在迎角超过8°以后,尾翼后缘的脉动压力系数随迎角增大而急剧增加。连续变迎角测量结果与固定迎角测量结果相比,脉动压力系数产生了明显的迟滞特性。尾翼上表面脉动压力的自相关系数和互相关系数从前缘到后缘逐渐降低,且前缘表现出显著自相关性,下翼面脉动压力基本互不相关。  相似文献   

11.
The interaction of a planar shock wave with a triangle-shaped sulfur hexafluoride (\(\mathrm{SF_6}\)) cylinder surrounded by air is numerically studied using a high resolution finite volume method with minimum dispersion and controllable dissipation reconstruction. The vortex dynamics of the Richtmyer–Meshkov instability and the turbulent mixing induced by the Kelvin–Helmholtz instability are discussed. A modified reconstruction model is proposed to predict the circulation for the shock triangular gas–cylinder interaction flow. Several typical stages leading the shock-driven inhomogeneity flow to turbulent mixing transition are demonstrated. Both the decoupled length scales and the broadened inertial range of the turbulent kinetic energy spectrum in late time manifest the turbulent mixing transition for the present case. The analysis of variable-density energy transfer indicates that the flow structures with high wavenumbers inside the Kelvin–Helmholtz vortices can gain energy from the mean flow in total. Consequently, small scale flow structures are generated therein by means of nonlinear interactions. Furthermore, the occasional “pairing” between a vortex and its neighboring vortex will trigger the merging process of vortices and, finally, create a large turbulent mixing zone.  相似文献   

12.
The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. W'avelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation position in the boundary layer, and the or breakup of eddies are related to the vertical energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.  相似文献   

13.
Characterization of parallel flow through rod bundles is of key importance in assessing the performance and safety of several engineering systems, including a majority of nuclear reactor concepts. Inhomogeneities in the bundle cross-section can present complex flow phenomena, including varying local conditions of turbulence. With the ever-increasing capabilities of high-performance computing, Direct Numerical Simulation (DNS) of turbulent flows is becoming more feasible. Through resolving all scales of turbulence, DNS can serve as a “numerical experiment,” and can provide substantial insight into flow physics, but at considerable computational cost. Thus to date, the DNS in open literature for rod bundle flows is relatively scarce, and largely limited to unit-cell domains. Since wall effects are important in rod bundle flows, a multiple-pin DNS study can expand understanding of rod bundle flows while providing valuable reference data for evaluating reduced-resolution techniques. In this work, DNS of a 5x5 square bare rod bundle representative of typical light water reactor fuel dimensions was performed using the spectral element code Nek5000. Turbulent microscales based on an advanced Reynolds-Averaged Navier–Stokes model were used to establish the required DNS resolution. Velocity and Reynolds stress fields are analyzed in detail, and invariant analysis is used for further investigation into flow physics. The results show stark changes in the structure of turbulence in the edge gaps, suggesting the presence of gap vortices in these regions. In addition, turbulent kinetic energy budgets are presented to more fully illustrate the various turbulent processes. These data can prove useful for rigorous evaluation of lower-fidelity turbulence modeling approaches.  相似文献   

14.
Investigations into the characteristics of turbulent heat transfer and coherent flow structures in a plane-channel subjected to wall-normal system rotation are conducted using direct numerical simulation (DNS). In order to investigate the influence of system rotation on the temperature field, a wide range of rotation numbers are tested, with the flow pattern transitioning from being fully turbulent to being quasilaminar, and eventually, fully laminar. In response to the Coriolis force, secondary flows appear as large vortical structures, which interact intensely with the wall shear layers and have a significant impact on the distribution of turbulence kinetic energy (TKE), turbulence scalar energy (TSE), temperature statistics, and turbulent heat fluxes. The characteristic length scales of turbulence structures responsible for the transport of TSE are the largest at the quasilaminar state, which demands a very large computational domain in order to capture the two-dimensional spectra of temperature fluctuations. The effects of the Coriolis force on the turbulent transport processes of the temperature variance and turbulent heat fluxes are thoroughly examined in terms of their respective budget balances.  相似文献   

15.
本文考察了分层流体中栅格湍流衰减和演化过程的细节,通过对空间场的信息二维图象处理,获得了湍流动能、耗散率、功率谱及多种湍流尺度等主要湍流特征量。结果显示层结加速了湍流垂直动能的衰减,而水平动能的衰减几乎很少受影响。流场各特征量与前人结果也符合得较好。  相似文献   

16.
To investigate the effectiveness of the Karhunen–Loeve (K–L) method as a data reduction approach, we study here its effect on the velocity and conformation statistics in a drag reducing turbulent polymer flow. The K–L method has been used to construct a set of basis velocity eigenfunctions from a large number of independent realizations of the velocity. Those were obtained from direct numerical simulation (DNS) of a viscoelastic turbulent channel flow using the Giesekus model. A subset of the K–L eigenfunctions, large enough to contain more than 90% of the fluctuating kinetic energy of the flow on the average, has then been subsequently used to obtain time series of projection coefficients of the velocity fields generated further from DNS. In a post-processing step, velocity fields were reconstructed using selected subsets of the projection coefficients. Those reconstructed velocity fields were then used to evaluate turbulent statistics as well as to integrate the constitutive equation. The turbulent statistics (r.m.s. velocities, Reynolds stress etc.) thus constructed showed good agreement with the full results from DNS. The Reynolds stress anisotropy was also calculated in this work for the first time. It was found to increase with viscoelasticity that was well reproduced in the reduced K–L data except near the channel centerline where the K–L data showed some loss of anisotropy. The biggest differences however between the K–L reduced data and the full DNS results were seen in the conformation statistics. The average polymer conformation extracted from the K–L reduced data was significantly less than that corresponding to the full DNS results anywhere except in the shear-dominated wall region. A further comparison of the energy and dissipation spectra between the full DNS and the K–L reconstructed data illustrated the impact of the K–L process in resulting to a significant damping of small turbulent scales even those contributing to the maximum in turbulent dissipation. This may also be the principal reason behind the poor quality of the K–L reconstructed conformation data.  相似文献   

17.
Density stratification has a strong impact on turbulence in geophysical flows. Stratification changes the spatial turbulence spectrum and the energy transport and conversion within the spectrum. We analyze these effects based on a series of direct numerical simulations (DNS) of stratified turbulence. To facilitate simulations of real-world problems, which are usually beyond the reach of DNS, we propose a subgrid-scale turbulence model for large eddy simulations of stratified flows based on the Adaptive Local Deconvolution Method (ALDM). Flow spectra and integral quantities predicted by ALDM are in excellent agreement with direct numerical simulation. ALDM automatically adapts to strongly anisotropic turbulence and is thus a suitable tool for studying turbulent flow phenomena in atmosphere and ocean.  相似文献   

18.
In this paper, direct numerical simulations have been performed to study the effects of Coriolis force on the turbulent flow field confined within a square duct subjected to spanwise system rotations at high rotation numbers. In response to the system rotation, secondary flows appear as large streamwise counter-rotating vortices, which interact intensely with the four boundary layers and have a significant impact on flow statistics, velocity spectra and coherent structures. It is observed that at sufficiently high rotation numbers, a Taylor–Proudman region appears and complete laminarization is almost reached near the top and side walls. The influence of large organized secondary flows on the production rate and re-distribution of turbulent kinetic energy has been investigated through a spectral analysis. It is observed that the Coriolis force dominates the transport of Reynolds stresses and turbulent kinetic energy, and forces the spectra of streamwise and vertical velocities to synchronize within a wide range of scales.  相似文献   

19.
This paper explores the application of SPH to a DNS of decaying turbulence in a two‐dimensional no‐slip wall‐bounded domain. In this bounded domain, the inverse energy cascade, and a net torque exerted by the boundary, results in a spontaneous spin‐up of the fluid, leading to a typical end state of a large monopole vortex that fills the domain. The SPH simulations were compared against published results using a high‐accuracy pseudo‐spectral code. Ensemble averages of the kinetic energy, enstrophy and average vortex wavenumber compared well against the pseudo‐spectral results, as did the evolution of the total angular momentum of the fluid. However, although the pseudo‐spectral results emphasised the importance of the no‐slip boundaries as generators of long‐lived coherent vortices in the flow, no such generation was seen in the SPH results. Vorticity filaments produced at the boundary were always dissipated by the flow shortly after separating from the boundary layer. The kinetic energy spectrum of the SPH results was calculated using an SPH Fourier transform that operates directly on the disordered particles. The ensemble kinetic energy spectrum showed the expected k?3 scaling over most of the inertial range. However, the spectrum flattened at smaller length scales (initially less than 7.5 particle spacings and growing in size over time), indicating an excess of small‐scale kinetic energy.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
An innovative approach which combines high order compact schemes, Immersed Boundary Method and an efficient domain decomposition method is used to perform high fidelity Direct Numerical Simulations (DNS) of four spatially evolving turbulent flows, one generated by a regular grid and three generated by fractal square grids. The main results which we have been able to obtain from these simulations are the following: the vorticity field appears more clustered when generated by fractal square grids compared to a regular grid; fractal square grids generate higher vorticities and turbulence intensities than a regular grid; the flow holds clear geometrical imprints of the fractal grids far downstream, a property which could be used in the future for flow design, management and passive control; the DNS obtained with fractal grids confirmed the existence of two turbulent regions, one where the turbulence progressively amplifies closer to the grid (the production region) followed by one where the turbulence decays; the energy spectra of fluctuating turbulent velocities at various locations in the production region of the flow provide some information on how the turbulence is generated at the smallest scales first near the grid where the smallest wakes are dominant, followed by progressively smaller turbulent frequencies further downstream where progressively larger wakes interact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号