首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthesis of bis(α‐bromo ketones) 5a‐c and 6b,c was accomplished by the reaction of bis(acetophenones) 3a‐c and 4b,c with N‐bromosuccinimide in the presence of p‐toluenesulfonic acid (p‐TsOH). Treatment of 5a‐c and 6b,c with each of 4‐amino‐3‐mercapto‐1,2,4‐triazoles 9a,b and 4‐amino‐6‐phenyl‐3‐mercapto‐1,2,4‐triazin‐5(4H)‐ones 13 in refluxing ethanol afforded the novel bis(s‐triazolo[3,4‐b][1,3,4]thiadiazines) 10a‐d and 11a‐c as well as bis(as‐triazino[3,4‐b][1,3,4]thiadiazines) 14a‐c and 15 , respectively, in good yields. Compounds 11b and 11c underwent NaBH4 reduction in methanol to give the target 1,ω‐bis{4‐(6,7‐dihydro‐3‐substituted‐5H‐1,2,4‐triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl)phenoxy}butanes 12a and 12b in 42 and 46% yields, respectively.  相似文献   

2.
Bis(triazolo[3,4‐b]thiadiazine) 4 in which the fused system is linked directly to the benzene core can be synthesized in 75% yield by, firstly, preparation of bis(s‐triazole) 2 followed by reaction with phenacyl bromide 3 in refluxing EtOH/DMF mixture containing piperidine. Bis(s‐triazolo[3,4‐b][1,3,4]thiadiazines) 8 and 11 in which the triazolothiadiazines are linked to benzene core via alkyl or ether linkage were synthesized in 70 and 72% yields, respectively, starting from dicarboxylic acids 5 and 9 upon treatment with two moles of thiocarbohydrazide 6 to give the corresponding bis(4‐amino‐5‐mercapto‐s‐triazolo‐3‐y1) derivatives 7 and 10 and subsequent reaction with two equivalents of phenacyl bromide. Bis(6‐phenyl‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines) 15a , 15b , 15c , 15d , 15e , 15f , which are linked to arene cores via sulfanylmethylene spacers, were prepared by the reaction of 4‐amino‐4H‐1,2,4‐triazole‐3,5‐dithiol 12 with the appropriate bis(bromomethyl)benzenes 13a , 13b , 13c , 13d , 13e , 13f to give bis(4‐amino‐5‐mercapto‐4H‐3‐sulfanylmethyl)arenes 14a , 14b , 14c , 14d , 14e , 14f and subsequent reaction with phenacyl bromide. Compounds 15a , 15b , 15c , 15d , 15e , 15f were alternatively obtained in 60–70% yields by twofold substitution of 13a , 13b , 13c , 13d , 13e , 13f with two equivalents of 6‐phenyl‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazine‐3‐thiol 16 in refluxing EtOH/DMF mixture containing KOH. Bis(triazolothiadiazine) 22 attached to the benzene core through the thiadiazine ring via an amine linkage was prepared in 70% yield starting from p‐phenylenediamine 19 by, firstly, acylation with chloroacetyl chloride 18 followed by bis‐alkylation with 1,2,4‐triazole 20 and subsequent intramolecular ring closure upon treatment with phosphorus oxychloride.  相似文献   

3.
Cyclization of 4‐amino‐6‐methyl‐3‐propargylmercapto‐1,2,4‐triazine‐5‐one 3 and 4‐amino‐3‐propargyl mercapto‐1,2,4‐triazole derivatives 6 were afforded 1,2,4‐triazino[3,4‐b][1,3,4]thiadiazines 4 and 1,2,4‐triazolo[3,4‐b][1,3,4]thiadiazines 7 in presence of heteropolyacids, H14[NaP5W29MoO110] and H6P2W18O60 in high yields. Among used heteropoly acids, the yields were higher with H14‐P5Mo, caused to their high acid strengths.  相似文献   

4.
The synthesis of a series of 21 novel 3‐alkyl/aryl‐7/9‐methyl‐10,10a‐dihydroindeno[1,2‐e][1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines ( 4 ) has been achieved by the cyclocondensation between 4/6‐methyl‐2‐tosyloxy‐1‐indanones ( 2 ) and 3‐alkyl/aryl‐4‐amino‐5‐mercapto‐1,2,4‐s‐triazoles ( 3 ). 4/6‐Methyl‐2‐tosyloxy‐1‐indanones ( 2 ) were readily accessible through hypervalent iodine oxidation of 4/6‐methyl‐1‐indanones using [(hydroxy)tosyloxyiodo]benzene (HTIB, Koser's reagent) in acetonitrile.  相似文献   

5.
Imidazo[2,1‐b][2H‐1,3,4]thiadiazines were prepared by cyclization of 2‐amino‐5‐(4‐chlorophenyl)‐6H‐1,3,4‐thiadiazine with α‐haloketones. 1,2,4‐Triazolo[3,4‐b][2H‐1,3,4]thiadiazines were prepared by cyclization of 4‐amino‐5‐sulfanyl‐l,2,4‐triazoles with phenacyl bromides.  相似文献   

6.
A series of novel 6‐2‐methoxy‐5‐[4‐methoxy‐3‐(3‐aryl[1,2,4]triazolo[3,4‐b][1,3,4]oxadiazol‐6‐yl)benzyl]phenyl‐3‐aryl[1,2,4]triazolo[3,4‐b][1,3,4]oxadiazoles 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j has been synthesized and characterized via IR, 1H NMR, 13C NMR, MS, and elemental analyses. Compounds 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j were also screened for their antibacterial activity against Gram‐positive bacteria viz. Bacillus subtilis (MTCC 441), Bacillus sphaericus (MTCC 11), and Staphylococcus aureus (MTCC 96), and Gram‐negative bacteria viz. Pseudomonas aeruginosa (MTCC 741), Klobsinella aerogenes (MTCC 39), and Chromobacterium violaceum (MTCC 2656). The antibacterial screening reveal that the presence of 2,4‐difluorophenyl ( 7e ) or 4‐nitrophenyl ( 7f ) of 2‐pyrazyl ( 7i ), or 2‐furyl ( 7j ) on the triazole moiety exhibited potent inhibitory activity comparable with the standard drug streptomycin, at the tested concentrations, and emerged as potential molecules for further development.  相似文献   

7.
We propose a method for obtaining derivatives of 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine by alkylation of 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol by substituted -chloroacetanilides, followed by cyclization of the intermediate by phosphorus oxychloride.  相似文献   

8.
The cyclization of 1‐amino‐2‐mercapto‐5‐[1‐(4‐ethoxyphenyl)‐5‐methyl‐1,2,3‐triazol‐4‐yl]‐1,3,4‐triazole which was synthesized from p‐ethoxyaniline with various triazole acid in absolute phosphorus oxychloride yields 3,6‐bis(1,2,3‐triazolyl)‐s‐triazolo[3,4‐b]‐1,3,4‐thiadiazole derivatives 9a?j , and their structures are established by MS, IR, CHN and 1H NMR spectral data.  相似文献   

9.
The condensation of 4‐amino‐5‐mercapto‐3‐(5‐methylisoxazol‐3‐yl)‐1,2,4‐triazole with substituted phenacyl bromide, aldehydes, p‐bromophenylisothiocyanate, aromatic carboxylic acids and oxalic acid, is described. The antibacterial activity of representative compounds was evaluated.  相似文献   

10.
[1,2,4]Triazolo[3,4‐b][1,3,4]thiadiazines 2a , 2b , 2c , 2d , 2e , 2f and 3,7‐dimethyl‐4H‐[1,2,4]triazino[3,4‐b][1,3,4]thiadiazin‐6‐one 4 were synthesized by one‐pot cyclocondensation reaction with α‐chloroacetonitrile and α‐haloketones in the presence of catalytic amounts of heteropolyacids in very high yields and rates. J. Heterocyclic Chem., (2011).  相似文献   

11.
A synthesis of novel bis(triazolothiadiazines) 11 , 12 , 13 , 14 , bis(quinoxalines) 16 and 17 , bis(thiadiazoles) 24 and 25 , and bis(oxadiazole) 31 , which are linked to the thieno[2,3‐b]thiophene core via phenoxymethyl group, was reported. Thus, reaction of the bis(α‐bromoketones) 6 and 7 with the corresponding 4‐amino‐3‐mercapto‐1,2,4‐triazole derivatives 8 , 9 , 10 in ethanol–DMF mixture in the presence of a few drops of triethylamine as a catalyst under reflux afforded the novel bis(5,6‐dihydro‐s‐triazolo[3,4‐b]thiadiazines) 11 , 12 , 13 , 14 in 60–72% yields. The bis(quinoxalines) 16 and 17 were also synthesized as a sole product in high yields by the reaction of 6 and 7 with o‐phenylenediamine 15 in refluxing acetonitrile in the presence of piperidine as a catalyst. Cyclization of the bis(aldehyde thiosemicarbazones) 20 and 21 with acetic anhydride afforded the corresponding bis(4,5‐dihydro‐1,3,4‐thiadiazolyl) derivatives 24 and 25 in good yield. Bis(5‐phenyl‐2,3‐dihydro‐1,3,4‐oxadiazole) derivative 31 could be obtained in 67% yield by cyclization of the appropriate bis(N‐phenylhydrazone) 29 in refluxing acetic anhydride for 3 h.  相似文献   

12.
Novel bis([1,2,4]triazolo[1,5‐a]pyrimidines) and bis(2‐thioxo‐2,3‐dihydropyrido[2,3‐d]pyrimidin‐4(1H)‐ones) were prepared utilizing bis(enaminones) as precursors. The structures of the prepared compounds were elucidated by several spectral tools as well as elemental analyses.  相似文献   

13.
Two synthetic routes were attempted for the synthesis of the novel bis(5,6‐dihydro‐S‐triazolo[3,4‐b]thiadiazines) 12a,b and 14 . In the first route the bis(aminotriazoles) 4a,b were reacted with the appropriate α‐haloketones or α‐haloesters to give the corresponding bis(S‐triazolo[3,4‐b]thiadiazines) 11a‐d followed by reduction with NaBH4. In the second route, the bis(Schiff bases) 13d were reacted with the appropriate α‐haloesters in refluxing DMF containing TEA to give the target compound 14 . Cyclocondensation of 4a,b with the appropriate bis(carbonyl) ethers 15a,b in refluxing acetic acid under high dilution conditions afforded the corresponding macrocyclic Schiff bases 16a‐c . The latter underwent alkylation with the appropriate halo compounds to give the corresponding alkylated derivatives 17a‐d .  相似文献   

14.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

15.
A one step synthesis protocol for the conversion of heteroylthiosemicarbazides and 2,3‐dichloro‐1,4‐naphthoquinone to naphtho[2,3‐d]thiazoles, naphtho[2,3‐e][1,3,4]thiadiazines as well as bis(naphtho[2,3‐d]thiazolyl)copper(II) derivatives is described. The products were conclusively confirmed by single crystal X‐ray analyses. A mechanism for the formation of the products is presented.  相似文献   

16.
Pyridine‐2(1H)‐thiones were prepared and reacted with several active halogenated reagents to afford novel thieno[2,3‐b]pyridines in excellent yields. Thieno[2,3‐b]pyridine‐2‐carbohydrazide derivative was prepared by the reaction of either ethyl 2‐((3‐cyanopyridin‐2‐yl)thio)acetate derivative or thieno[2,3‐b]pyridine‐2‐carboxylate derivative with hydrazine hydrate. On the other hand, the reaction of either pyridine‐2(1H)‐thione or ethyl 2‐((pyridin‐2‐yl)thio)acetate derivative with hydrazine hydrate afforded the corresponding 1H‐pyrazolo[3,4‐b]pyridine derivative. Thieno[2,3‐b]pyridine derivatives reacted with several reagents to afford the corresponding pyrimidine‐4(3H)‐ones and [1,2,3]triazin‐4‐(3H)‐one. Moreover, 2‐carbohydrazide derivative reacted with β‐dicarbonyl reagents to give 2‐((3‐methyl‐1H‐pyrazol‐1‐yl)carbonyl)thienopyridines. The structure of the target molecules is elucidated using elemental analyses and spectral data.  相似文献   

17.
Several new pyrimido[4,5‐e ][1,2,4]triazolo[3,4‐b ][1,3,4]thiadiazine derivatives ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ) were synthesized through the condensation reaction of 5‐bromo‐4,6‐dichloropyrimidine ( 1 ) and 4‐amino‐5‐methyl‐4H‐1,2,4‐triazole‐3‐thiol ( 2 ). The single crystal X‐ray data of one of the derivatives confirmed the occurrence of the S/N type Smiles rearrangement during the course of the reaction.  相似文献   

18.
The crystal structures of four new chiral [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines are described, namely, ethyl 5′‐benzoyl‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O3S, ethyl 5′‐(4‐methoxybenzoyl)‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C20H24N4O4S, ethyl 6,6‐dimethyl‐5‐(4‐methylbenzoyl)‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C17H20N4O3S, and ethyl 5‐benzoyl‐6‐(4‐methoxyphenyl)‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C21H20N4O4S. The crystallographic data and cell activities of these four compounds and of the structures of three previously reported similar compounds, namely, ethyl 5′‐(4‐methylbenzoyl)‐5′H,7′H‐spiro[cyclopentane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O3S, ethyl 5′‐(4‐methoxybenzoyl)‐5′H,7′H‐spiro[cyclopentane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O4S, and ethyl 6‐methyl‐5‐(4‐methylbenzoyl)‐6‐phenyl‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C22H22N4O3S, are contrasted and compared. For both crystallization and an MTT assay, racemic mixtures of the corresponding [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines were used. The main manner of molecular packing in these compounds is the organization of either enantiomeric pairs or dimers. In both cases, the formation of two three‐centre hydrogen bonds can be detected resulting from intramolecular N—H…O and intermolecular N—H…O or N—H…N interactions. Molecules of different enantiomeric forms can also form chains through N—H…O hydrogen bonds or form layers between which only weak hydrophobic contacts exist. Unlike other [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines, ethyl 5′‐benzoyl‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate contains molecules of only the (R)‐enantiomer; moreover, the N—H group does not participate in any significant intermolecular interactions. Molecular mechanics methods (force field OPLS3e) and the DFT B3LYP/6‐31G+(d,p) method show that the compound forming enantiomeric pairs via weak N—H…N hydrogen bonds is subject to greater distortion of the geometry under the influence of the intermolecular interactions in the crystal. For intramolecular N—H…O and S…O interactions, an analysis of the noncovalent interactions (NCIs) was carried out. The cellular activities of the compounds were tested by evaluating their antiproliferative effect against two normal human cell lines and two cancer cell lines in terms of half‐maximum inhibitory concentration (IC50). Some derivatives have been found to be very effective in inhibiting the growth of Hela cells at nanomolar and submicromolar concentrations with minimal cytotoxicity in relation to normal cells.  相似文献   

19.
An efficient and convenience method has been developed via a one‐pot double Mannich type reaction for the synthesis of the important chiral s‐triazole derivatives: (S)‐3‐α‐phenylethyl‐2,4‐dihydro‐5‐aryl‐oxymethyl‐1,2,4‐triazolo [3,4‐b] ‐1,3,5 ‐thiadiazines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号