首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The rank of a graph is that of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. We determine the maximum order of reduced trees as well as bipartite graphs with a given rank and characterize those graphs achieving the maximum order.  相似文献   

2.
Three new strongly regular graphs on 256, 120, and 135 vertices are described in this paper. They satisfy thet-vertex condition — in the sense of [1] — on the edges and on the nonedges fort=4 but they are not rank 3 graphs. The problem to search for any such graph was discussed on a folklore level several times and was fixed in [2]. Here the graph on 256 vertices satisfies even the 5-vertex condition, and has the graphs on 120 and 135 vertices as its subgraphs. The existence of these graphs was announced in [3] and [4]. [4] contains M. H. Klin's interpretation of the graph on 120 vertices. Further results concerning these graphs were obtained by A. E. Brouwer, cf. [5].  相似文献   

3.
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.  相似文献   

4.
Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one. In this paper we determine the graph with the largest spectral radius among all bicyclic graphs with n vertices and diameter d. As an application, we give first three graphs among all bicyclic graphs on n vertices, ordered according to their spectral radii in decreasing order.  相似文献   

5.
On bags and bugs   总被引:1,自引:0,他引:1  
Usual graph classes, such as complete graphs, paths, cycles and stars, frequently appear as extremal graphs in graph theory problems. Here we want to turn the reader's attention to two novel, simply defined, graph classes that appear as extremal graphs in several graph theory problems. We call them bags and bugs. As examples of problems where bags and bugs appear, we show that balanced bugs maximize the index of graphs with fixed number of vertices and diameter ?2, while odd bags maximize the index of graphs with fixed number of vertices and radius ?3.  相似文献   

6.
A connected graph is said to be unoriented Laplacian maximizing if the spectral radius of its unoriented Laplacian matrix attains the maximum among all connected graphs with the same number of vertices and the same number of edges. A graph is said to be threshold (maximal) if its degree sequence is not majorized by the degree sequence of any other graph (and, in addition, the graph is connected). It is proved that an unoriented Laplacian maximizing graph is maximal and also that there are precisely two unoriented Laplacian maximizing graphs of a given order and with nullity 3. Our treatment depends on the following known characterization: a graph G is threshold (maximal) if and only if for every pair of vertices u,v of G, the sets N(u)?{v},N(v)?{u}, where N(u) denotes the neighbor set of u in G, are comparable with respect to the inclusion relation (and, in addition, the graph is connected). A conjecture about graphs that maximize the unoriented Laplacian matrix among all graphs with the same number of vertices and the same number of edges is also posed.  相似文献   

7.
We study the minimum semidefinite rank of a graph using vector representations of the graph and of certain subgraphs. We present a sufficient condition for when the vectors corresponding to a set of vertices of a graph must be linearly independent in any vector representation of that graph, and conjecture that the resulting graph invariant is equal to minimum semidefinite rank. Rotation of vector representations by a unitary matrix allows us to find the minimum semidefinite rank of the join of two graphs. We also improve upon previous results concerning the effect on minimum semidefinite rank of the removal of a vertex.  相似文献   

8.
In edge colouring it is often useful to have information about the degree distribution of the neighbours of a given vertex. For example, the well-known Vizing's Adjacency Lemma provides a useful lower bound on the number of vertices of maximum degree adjacent to a given one in a critical graph. We consider an extension of this problem, where we seek information on vertices at distance two from a given vertex in a critical graph. We extend and, simultaneously, generalize to multigraphs two results proved, respectively, by Zhang [Every planar graph with maximum degree seven is Class 1, Graphs Combin. 16 (2000) 467-495] and Sanders and Zhao [Planar graphs of maximum degree seven are Class 1, J. Combin. Theory Ser. B 83 (2001) 201-212].  相似文献   

9.
《Quaestiones Mathematicae》2013,36(2):175-178
ABSTRACT

A connected, nontrivial, simple graph of order v is said to be α,β destructible if α,β are factors of v and an α-set of edges, E', exists whose removal from G isolates exactly the vertices in α,β-set V'. Graphs which are not α,β destructible for any α,β are called stable, If G is a stable graph on a prime number p ≥ 7 of vertices, then we show that G has a maximum number of edges if and only if G is K2,p-2, We also characterize stable graphs on a minimum number of edges.  相似文献   

10.
In this paper we characterize the unique graph whose least eigenvalue attains the minimum among all connected graphs of fixed order and given number of cut vertices, and then obtain a lower bound for the least eigenvalue of a connected graph in terms of the number of cut vertices. During the discussion we also get some results for the spectral radius of a connected bipartite graph and its upper bound.  相似文献   

11.
The minimum skew rank of a simple graph G   is the smallest possible rank among all real skew-symmetric matrices whose (i,j)(i,j)-entry is nonzero if and only if the edge joining i and j is in G. It is known that a graph has minimum skew rank 2 if and only if it consists of a complete multipartite graph and some isolated vertices. Some necessary conditions for a graph to have minimum skew rank 4 are established, and several families of graphs with minimum skew rank 4 are given. Linear algebraic techniques are developed to show that complements of trees and certain outerplanar graphs have minimum skew rank 4.  相似文献   

12.
If G is a connected undirected simple graph on n vertices and n+c-1 edges, then G is called a c-cyclic graph. Specially, G is called a tricyclic graph if c=3. Let Δ(G) be the maximum degree of G. In this paper, we determine the structural characterizations of the c-cyclic graphs, which have the maximum spectral radii (resp. signless Laplacian spectral radii) in the class of c-cyclic graphs on n vertices with fixed maximum degree . Moreover, we prove that the spectral radius of a tricyclic graph G strictly increases with its maximum degree when , and identify the first six largest spectral radii and the corresponding graphs in the class of tricyclic graphs on n vertices.  相似文献   

13.
A set of vertices S in a graph is called geodetic if every vertex of this graph lies on some shortest path between two vertices from S. In this paper, minimum geodetic sets in median graphs are studied with respect to the operation of peripheral expansion. Along the way geodetic sets of median prisms are considered and median graphs that possess a geodetic set of size two are characterized.  相似文献   

14.
The notion of w-density for the graphs with positive weights on vertices and nonnegative weights on edges is introduced. A weighted graph is called w-balanced if its w-density is no less than the w-density of any subgraph of it. In this paper,a good characterization of w-balanced weighted graphs is given. Applying this characterization ,many large w-balanced weighted graphs are formed by combining smaller ones. In the case where a graph is not w-balanced,a polynomial-time algorithm to find a subgraph of maximum w-density is proposed. It is shown that the w-density theory is closely related to the study of SEW(G,w) games.  相似文献   

15.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

16.
We investigate the expected value of various graph parameters associated with the minimum rank of a graph, including minimum rank/maximum nullity and related Colin de Verdière-type parameters. Let G(v,p) denote the usual Erd?s-Rényi random graph on v vertices with edge probability p. We obtain bounds for the expected value of the random variables mr(G(v,p)), M(G(v,p)), ν(G(v,p)) and ξ(G(v,p)), which yield bounds on the average values of these parameters over all labeled graphs of order v.  相似文献   

17.
《Quaestiones Mathematicae》2013,36(4):533-549
Abstract

The bipartiteness of a graph is the minimum number of vertices whose deletion from G results in a bipartite graph. If a graph invariant decreases or increases with addition of edges of its complement, then it is called a monotonic graph invariant. In this article, we determine the extremal values of some famous monotonic graph invariants, and characterize the corresponding extremal graphs in the class of all connected graphs with a given vertex bipartiteness.  相似文献   

18.
Fiber-complemented graphs form a vast non-bipartite generalization of median graphs. Using a certain natural coloring of edges, induced by parallelism relation between prefibers of a fiber-complemented graph, we introduce the crossing graph of a fiber-complemented graph G as the graph whose vertices are colors, and two colors are adjacent if they cross on some induced 4-cycle in G. We show that a fiber-complemented graph is 2-connected if and only if its crossing graph is connected. We characterize those fiber-complemented graphs whose crossing graph is complete, and also those whose crossing graph is chordal.  相似文献   

19.
A t-walk-regular graph is a graph for which the number of walks of given length between two vertices depends only on the distance between these two vertices, as long as this distance is at most t. Such graphs generalize distance-regular graphs and t-arc-transitive graphs. In this paper, we will focus on 1- and in particular 2-walk-regular graphs, and study analogues of certain results that are important for distance-regular graphs. We will generalize Delsarte?s clique bound to 1-walk-regular graphs, Godsil?s multiplicity bound and Terwilliger?s analysis of the local structure to 2-walk-regular graphs. We will show that 2-walk-regular graphs have a much richer combinatorial structure than 1-walk-regular graphs, for example by proving that there are finitely many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given diameter (a geometric graph is the point graph of a special partial linear space); a result that is analogous to a result on distance-regular graphs. Such a result does not hold for 1-walk-regular graphs, as our construction methods will show.  相似文献   

20.
We study entanglement properties of mixed density matrices obtained from combinatorial Laplacians. This is done by introducing the notion of the density matrix of a graph. We characterize the graphs with pure density matrices and show that the density matrix of a graph can be always written as a uniform mixture of pure density matrices of graphs. We consider the von Neumann entropy of these matrices and we characterize the graphs for which the minimum and maximum values are attained. We then discuss the problem of separability by pointing out that separability of density matrices of graphs does not always depend on the labelling of the vertices. We consider graphs with a tensor product structure and simple cases for which combinatorial properties are linked to the entanglement of the state. We calculate the concurrence of all graphs on four vertices representing entangled states. It turns out that for these graphs the value of the concurrence is exactly fractional. Received July 28, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号