首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The title compound 4 , i.e. 9‐chloro‐4,5‐dihydro‐2‐ethyl‐1‐(2,4,6‐trichlorophenyl)‐1H‐1,2,4‐triazolo[3,2‐d]‐[1,5]benzoxazepinium hexachloroantimonate, is a novel 6‐7‐5 tricyclic heterocycle. C18H14Cl4N3O·SbCJ6, M = 764.61, P21/c(#14), a = 13.457(4), b = 11.583(2), c = 18.992(3) Å α = 90, β = 110.11(1)°, Z = 4, V = 2780(1) Å3, Dc = 1.827 g/cc, μ (MoKα) = 19.69 cm?1, F(000) = 1488.00, T = 293 K, Rint = 0.055 for 3094 independent reflections with I>3.00σ(I). The five‐membered heterocyclic ring is nearly planar, with the trichlorophenyl ring at N(2) almost perpendicular to it. However, the seven‐membered ring is not planar, but adopts a twist‐boat conformation.  相似文献   

2.
Relative rate coefficients for the reactions of OH with 3‐methyl‐2‐cyclohexen‐1‐one and 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one have been determined at 298 K and atmospheric pressure by the relative rate technique. OH radicals were generated by the photolysis of methyl nitrite in synthetic air mixtures containing ppm levels of nitric oxide together with the test and reference substrates. The concentrations of the test and reference substrates were followed by gas chromatography. Based on the value k(OH + cyclohexene) = (6.77 ± 1.35) × 10?11 cm3 molecule?1 s?1, rate coefficients for k(OH + 3‐methyl‐2‐cyclohexen‐1‐one) = (3.1 ± 1.0) × 10?11 and k(OH + 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one) = (2.4 ± 0.7) × 10?11 cm3 molecule?1 s?1 were determined. To test the system we also measured k(OH + isoprene) = (1.11 ± 0.23) × 10?10 cm3 molecule?1 s?1, relative to the value k(OH + (E)‐2‐butene) = (6.4 ± 1.28) × 10?11 cm3 molecule?1 s?1. The results are discussed in terms of structure–activity relationships, and the reactivities of cyclic ketones formed in the photo‐oxidation of monoterpene are estimated. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 7–11, 2002  相似文献   

3.
The title compound ( 1 ), 4‐(1‐benzyl‐5‐methyl‐1H‐1,2,3‐triazol‐4‐yl)‐6‐(2,4‐dichlorophenyl)pyrimidin‐2‐amine (C20H16Cl2N6), was synthesized and structurally characterized by elemental analysis, 1H NMR and 13C NMR and single crystal X‐ray diffraction. The compound crystallizes as a colourless needle shaped in the triclinic system, space group P‐1 with cell constants: a = 10.7557(11) Å, b = 12.7078(17) Å, c = 15.511(2) Å, α = 68.029(4)0, β = 86.637(5)0, γ = 87.869(4)0; V = 1962.4 (4) Å3, Z = 4. There are two structurally similar but crystallographically independent molecules (A and B) in the asymmetric unit of the title compound, which is linked via N‐H…Cl hydrogen bond. An intramolecular C‐H…N hydrogen also occurs in each molecule. In the crystal, each of independent molecules forms a centrosymmetric dimer with an R22(8) ring motifs through a pair of N‐H…N hydrogen bonds. These dimers are further connected by intermolecular N‐H…Cl and C‐H…Cl hydrogen bonds, forming an infinite two dimensional supramolecular network lying parallel to the [010] plane. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6‐311G (d, p) basis set and compared with the experimental data. Mulliken population analyses on atomic charges, HOMO‐LUMO energy levels, Molecular electrostatic potential and chemical reactivity of the title compound were investigated by theoretical calculations. The thermo dynamical properties of the title compound at different temperature have been calculated and corresponding relations between the properties and temperature have also been obtained. The in vitro antibacterial activity has been screened against Gram‐positive (Bacillus cerus and Staphylococcus epidermidis) and Gram‐Negative (Escherichia coli, Acinetobacter baumannii and Proteus vulgaris). The results revealed that the compound exhibited good to moderate antibacterial activity.  相似文献   

4.
The title molecule, 3‐{[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐hydrazono}‐1,3‐dihydro‐indol‐2‐one (C22H20N4O1S1), was prepared and characterized by 1H NMR, 13C NMR, IR, UV–visible, and single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group P21 with a = 8.3401(5), b = 5.6976(3), c = 20.8155(14) Å, and β = 95.144(5)°. Molecular geometry from X‐ray experiment and vibrational frequencies of the title compound in the ground state has been calculated using the Hartree–Fock with 6‐31G(d, p) and density functional method (B3LYP) with 6‐31G(d, p) and 6‐311G(d, p) basis sets, and compared with the experimental data. The calculated results show that optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies values show good agreement with experimental data. Density functional theory calculations of the title compound and thermodynamic properties were performed at B3LYP/6‐31G(d, p) level of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

5.
The syntheses of a series of l‐methyl‐3‐aryl‐substituted titanocene and zirconocene dichlorides are reported. These complexes are synthesized by the reaction of 2‐ and 3‐methyl‐6, 6‐dimethylfulvenes (1:4) with aryllithium, followed by the reaction with TiCl4·2THF, ZrCl4 and (CpTiCl2)2O respectively, to give complexes 1–5. The complex [η5‐1‐methyl‐3‐(α, α‐dimethylbenzyl) cyclopentadienyl] titanium dichloride has been studied by X‐ray diffraction. The red crystal of this complex is monoclinic, space group P2t/C with unit cell parameters: a =6.973(6) × 10?1 nm, b =36.91(2) × 10?1 nm, c = 10.063(4) × 10?1 nm, α=β= γ = 93.35(5)°, V = 2584(5) × 10?3 nm3 and Z = 4. Refinement for 1004 observed reflections gives the final R of 0.088. There are four independent molecules per unit cell.  相似文献   

6.
This article deals with isomeric ruthenium complexes [RuIII(LR)2(acac)] (S=1/2) involving unsymmetric β‐ketoiminates (AcNac) (LR=R‐AcNac, R=H ( 1 ), Cl ( 2 ), OMe ( 3 ); acac=acetylacetonate) [R=para‐substituents (H, Cl, OMe) of N‐bearing aryl group]. The isomeric identities of the complexes, cct (ciscis‐trans, blue, a ), ctc (cis‐trans‐cis, green, b ) and ccc (ciscis‐cis, pink, c ) with respect to oxygen (acac), oxygen (L) and nitrogen (L) donors, respectively, were authenticated by their single‐crystal X‐ray structures and spectroscopic/electrochemical features. One‐electron reversible oxidation and reduction processes of 1 – 3 led to the electronic formulations of [RuIII(L)(L ? )(acac)]+ and [RuII(L)2(acac)]? for 1 +‐ 3 + (S=1) and 1? – 3? (S=0), respectively. The triplet state of 1 +‐ 3 + was corroborated by its forbidden weak half‐field signal near g≈4.0 at 4 K, revealing the non‐innocent feature of L. Interestingly, among the three isomeric forms ( a – c in 1 – 3 ), the ctc ( b in 2 b or 3 b ) isomer selectively underwent oxidative functionalization at the central β‐carbon (C?H→C=O) of one of the L ligands in air, leading to the formation of diamagnetic [RuII(L)(L ′ )(acac)] (L ′ =diketoimine) in 4 / 4′ . Mechanistic aspects of the oxygenation process of AcNac in 2 b were also explored via kinetic and theoretical studies.  相似文献   

7.
3‐Deoxy‐3‐fluoro‐d ‐glucopyranose crystallizes from acetone to give a unit cell containing two crystallographically independent molecules. One of these molecules (at site A) is structurally homogeneous and corresponds to 3‐deoxy‐3‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I). The second molecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3‐deoxy‐3‐fluoro‐α‐d ‐glucopyranose, (II); treatment of the diffraction data using partial‐occupancy oxygen at the anomeric center gave a high‐quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α‐ and β‐anomers at site B appears to be accommodated in the lattice because hydrogen‐bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (BC1,C4) and ϕ(II) = 26.0 (15)° (C3TBC1); B = boat conformation and TB = twist‐boat conformation]. The exocyclic hydroxymethyl (–CH2OH) conformation is gg (gauchegauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, deoxy and fluorine‐substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.  相似文献   

8.
1,3‐Dimethyl‐5‐amino‐1H‐tetrazolium 5‐nitrotetrazolate ( 5b ) was synthesized in high yield from 1,4‐dimethyl‐5‐amino‐1H‐tetrazolium iodide ( 5a ) and silver 5‐nitrotetrazolate. Both new compounds ( 5a and 5b ) were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C and 15N), elemental analysis and single‐crystal X‐ray diffraction. 5a crystallizes in an orthorhombic cell: Pbca, a = 11.5016(4), b = 13.7744(5), c = 13.7744(5) Å, V = 1638.2(1) Å3, Z = 8, ρ = 1.955 g cm?3, R1 = 0.0210 (F > 4σ(F)), wR2 (all data) = 0.0542; whereas 5b crystallizes in a monoclinic cell: C1c, a = 14.5228(8), b = 5.0347(2), c = 13.7217(7) Å, β = 112.11(1)°, V = 929.6(2) Å3, Z = 4, ρ = 1.630 g cm?3, R1 = 0.0279 (F > 4σ(F)), wR2 (all data) = 0.0585. The sensitivity of 5b to classical stimuli was determined by using standard BAM tests and its thermal stability was assessed by DSC measurements. In addition, its heat of combustion was determined by bomb calorimetry measurements. The EXPLO5 was used to calculate the detonation pressure (P) and velocity (D) of 5b (P = 13.3 GPa and D = 6379 m s?1), as well as those of its mixtures with ammonium nitrate (P = 23.2 GPa and D = 7862 m s?1) and ammonium dinitramide (P = 29.6 GPa and D = 8594 m s?1). Compound 5b is a hydrolytically stable solid with a high melting point (160 °C) and thermally stable to 190 °C with a very low sensitivity to friction (>360 N) and impact (>30 J) and good performance in combination with an oxidizer making it of interest in new environmentally friendly, insensitive explosive formulations.  相似文献   

9.
The complex Eu(btfa)3 (phen) (btfa=4,4,4‐trifluoro‐1‐phenyl‐1, 3‐butanedione, phen = 1,10‐phenanthroline) has been prepared and characterized by elemental analysis, IR and UV spectroscopies. The crystal and molecular structures of the complex have been determined by X‐ray diffraction analysis. It belongs to the monoclinic crystal system, space group P21/c with a = 0.9700(2) nm, b = 3.7450(5) nm, c = 1.0917(3) nm, β = 92.51(2)°, V = 3.962(1) nm5, Z = 4, Dc = 1.639 g/cm3, μ = 1.676 mm?1, F(000) = 1936, R1, = 0.0388, wR2 = 0.0775. Structure analysis shows that the europium(III) ion is coordinated to six oxygen atoms of β‐diketonate anions and two nitrogen atoms of phenanthroline molecule. The coordination polyhedron is an approximate square antiprism.  相似文献   

10.
r‐1, c‐2, t‐3, t‐4‐1,3‐Bis[2‐(5‐R‐benzoxazolyl)]‐2,4‐di(4‐R'‐phenyl)cyclobutane (IIa: R=R' = H; IIb: R=Me, R'= H; IIc: R = Me, R' = OMe) was synthesized with high stereo‐selectivity by the photodimerization of trans‐l‐[2‐(5‐R‐benzoxazolyl)]‐2‐(4‐R'‐phenyl) ethene (Ia: R=R' = H; Ib: R = Me, R' = H; Ic: R = Me, R' = OMe) in sulfuric acid. The structures of IIa–IIc were identified by elemental analysis, IR, UV, 1H NMR, 13C NMR and MS. The molecular and crystal structure of IIc has been determined by X‐ray diffraction method. The crystal of IIc (C34H30N2O4. 0.5C2OH) is monoclinic, space group P21/n with cell dimensions of a = 1.5416(3), b =0.5625(1), c = 1.7875(4) nm, β = 91.56 (3)°, V= 1.550(1) nm3, Z = 2. The structure shows that the molecule of IIc is centrosymmetric, which indicates that the dimerization process is a head‐to‐tail fashion. The selectivity of the photodimerization of Ia–Ic has been enhanced by using acidic solvent and the reaction speed would be decreased when electron donating group was introduced in the 4‐position of the phenyl group. That the photodimerization is not affected by the presence of oxygen as well as its high stereo‐selectivity demonstrated that the reaction proceeded through an excited singlet state. It was also found that under irradiation of short wavelength UV, these dimers underwent photolysis completely to reproduce its trans‐monomers, and then the new formed species changed into their cis‐isomers through trans‐cis isomerization.  相似文献   

11.
The title compound was prepared by reaction of N, N‐dimethyldithiocarbamate sodium with l‐bromo‐l‐(4‐methoxyphenylcarbonyl)‐2‐(1, 2, 4‐triazole‐l‐yl) ethane. Its crystal structure has been determined by X‐ray diffraction analysis. The crystal belongs to triclinic with space group Pī, a = 0.7339(2) nm, b = 1.1032(2) nm, c = 1.1203(2) nm, a = 90.27(3)°, β = 102.03(3)°, γ = 104.91(3)°, Z=2, V = 0.8556(3) nm3, Dc = 1.360 g/cm3, μ =0.325 mm?1, F(000)=368, final R1 =0.0475. The planes of 4‐methoxybenzyl group and triazole ring are nearly perpendicular to each other. The dihedral angle is 83.97°. There is an obvious π‐π stacking interaction between the molecules in the crystal lattice. The results of biological test show that the title compound has fungicidal and plant growth regulating activities.  相似文献   

12.
A green and convenient approach to the synthesis of novel 4,7‐diaryl‐2‐oxo(thio)‐1,2,3,4,5,6,7,8‐octahydroquinazoline‐5‐one derivatives from appropriate aromatic aldehydes and 5‐aryl‐1,3‐cyclohexanedione with urea or thiourea in the presence of dilute HCl as catalyst in water is described. This method provides several advantages such as environmental friendliness, low cost, high yields, and simple workup procedure. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR. The crystal and molecular structure of 4‐(4′‐chlorophenyl)‐7‐(4′‐methoxyphenyl)‐1,2,3,4,5,6,7,8‐octahydroquinazoline‐2,5‐dione 5m have been determined by single crystal X‐ray diffraction analysis. The crystal of compound 5m belongs to monoclinic with space group P‐21/c, a = 1.4353 (4) nm, b = 1.4011 (4) nm, c = 0.9248 (3) nm, α = 90.00°, β = 101.242 (6)°, γ = 90.00°, Z = 4, V = 1.8241 (9) nm3, R1 = 0.0448, and wR2 = 0.1022. J. Heterocyclic Chem., (2011).  相似文献   

13.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

14.
Thermal decomposition of four tertiary N‐(2‐methylpropyl)‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐N‐oxyl (SG1)‐based alkoxyamines (SG1‐C(Me)2‐C(O)‐OR, R = Me, tBu, Et, H) has been studied at different experimental conditions using 1H and 31P NMR spectroscopies. This experiment represents the initiating step of methyl methacrylate polymerization. It has been shown that H‐transfer reaction occurs during the decomposition of three alkoxyamines in highly degassed solution, whereas no products of H‐transfer are detected during decomposition of SG1‐MAMA alkoxyamine. The value of the rate constant of H‐transfer for alkoxyamines 1 (SG1‐C(Me)2‐C(O)‐OMe) and 2 ( SG1‐C(Me)2‐C(O)‐OtBu) has been estimated as 1.7 × 103 M?1s?1. The high influence of oxygen on decomposition mechanism is found. In particular, in poorly degassed solutions, nearly quantitative formation of oxidation product has been observed, whereas at residual pressure of 10?5 mbar, the main products originate from H‐atom transfer reaction. The acidity of the reaction medium affects the decomposition mechanism suppressing the H‐atom transfer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
The title compound, C9H12N6O3, shows a syn‐glycosylic bond orientation [χ = 64.17 (16)°]. The 2′‐deoxyfuranosyl moiety exhibits an unusual C1′‐exo–O4′‐endo (1T0; S‐type) sugar pucker, with P = 111.5 (1)° and τm = 40.3 (1)°. The conformation at the exocyclic C4′—C5′ bond is +sc (gauche), with γ = 64.4 (1)°. The two‐dimensional hydrogen‐bonded network is built from intermolecular N—H...O and O—H...N hydrogen bonds. An intramolecular bifurcated hydrogen bond, with an amino N—H group as hydrogen‐bond donor and the ring and hydroxymethyl O atoms of the sugar moiety as acceptors, constrains the overall conformation of the nucleoside.  相似文献   

16.
Chiral 1,3,2‐Oxazaborolidines from the Reaction of Chiral 2,3‐Dihydro‐1H‐1,3,2‐diazaboroles and Diphenylketene Reaction of equimolar amounts of diphenylketene with 1,3‐di‐tert‐butyl‐2‐isobutyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 1 ) regioselectively afforded 1,3,2‐oxazaborolidine ( 2 ). The employment of a series of chiral diazaboroles ( 3a : X = nBu; b: iBu; c: CH2SiMe3; d: NHtBu) led to the formation of the diastereoisomeric oxazaborolidines ( 4a – d ) with diastereomeric excesses de, which increase with the steric demand of X from de = 55 % (X = nBu) to de ≥ 95 % (X = NHtBu). Under comparable conditions the treatment of the enantiomerically pure diazaborole ( 6 ) with the ketene yielded oxazaborolidine ( 7 ) with a de‐value of only 52 %. The new compounds, with exception of 2 and 4d , are thermolabile solids, which were characterized mainly by spectroscopy (1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The X‐ray structure analysis of 2 revealed a slightly puckered five‐membered heterocycle with a long B–O bond.  相似文献   

17.
1,5‐Diamino‐4‐methyltetrazolium 5‐nitrotetrazolate ( 2b ) was synthesized in high yield from 1,5‐diamino‐4‐methyltetrazolium iodide ( 2a ) and highly sensitive silver 5‐nitrotetrazolate (AgNT). A safer synthesis, suitable for scale‐up, is introduced involving reaction of the previously unreported 1‐amino‐5‐imino‐4‐methyltetrazole free base ( 2 ) with ammonium 5‐nitrotetrazolate. Both new compounds ( 2 and 2b ) were fully characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C, 14N, 15N), elemental analysis and single crystal X‐ray diffraction. The hydrogen‐bonding networks of both materials are described in terms of their graph‐sets. Compound 2b is hydrolytically stable with a high melting point and concomitant decomposition at 160 °C. The sensitivity of the energetic salt 2b towards impact (>30 J) and friction (>360 N) was tested. The constant volume energy of combustion (ΔcU) of 2b was measured experimentally using bomb calorimetry. In addition, the detonation parameters (detonation pressure and velocity) of the nitrotetrazolate salt were calculated from the energy of formation, the crystal density and the molecular formula using the EXPLO5 computer code (P = 15.5·GPa, D = 6749 m s?1) and are similar to that of TNT and nitroguanidine making 2b of prospective interest in propellant charge formulations or, in combination with a suitable oxidizer, as a solid propellant.  相似文献   

18.
1,4‐Pentadien‐3‐one‐1,5‐bis(p‐hydroxyphenyl) (PBHP) was prepared by reacting p‐hydroxybenzaldehyde and acetone in the presence of an acid catalyst. 1,4‐Pentadiene‐3‐one‐1‐p‐hydroxyphenyl‐5‐p‐phenyl methacrylate (PHPPMA) monomer was prepared by reacting PBHP dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine. A free‐radical solution polymerization technique was used for synthesizing homo‐ and copolymers of different feed compositions of PHPPMA and ethyl acrylate (EA) in EMK as a solvent with benzoyl peroxide as a free‐radical initiator at 70 ± 1 °C. All the polymers were characterized with IR and 1H NMR techniques. The compositions of the copolymers were determined with the 1H NMR technique. The copolymer reactivity ratios were evolved with Kelen–Tudos (EA = 1.25 and PHPPMA = 0.09) and extended Kelen–Tudos (EA = 1.30 and PHPPMA = 0.09) methods. Q (0.48) and e (1.68) values for the new monomer (PHPPMA) were calculated with the Alfrey–Price method. UV absorption spectra for poly(PHPPMA) showed two absorption bands at 302 and 315 nm. The photocrosslinking properties of the polymer samples were examined with the solvent method. Thermal analyses of the polymers were performed with the thermogravimetric‐differential thermogravimetric technique. First, the decomposition temperatures started for poly(PHPPMA), copoly(EA‐PHPPMA) (62:38), and copoly(EA‐PHPPMA) (41:59) were at 350, 410, and 417 °C, respectively. A gel permeation chromatographic method was used for determining the polymer molecular weights (weight‐average molecular weight: 2.67 × 104 and number‐average molecular weight: 1.41 × 104) and polydispersity index (1.89). The solubility of the monomer and the copolymers occurred at 30 °C with solvents having different polarities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1632–1640, 2003  相似文献   

19.
3‐Methyl‐3‐(3‐pentyl)‐1,2‐dioxetane 1 and 3‐methyl‐3‐(2,2‐dimethyl‐1‐propyl)‐1,2‐dioxetane 2 were synthesized in low yield by the α‐bromohydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔH‡ = 25.0 ± 0.3 kcal/mol, ΔS‡ = −1.0 entropy unit (e.u.), ΔG‡ = 25.3 kcal/mol, k1 (60°C) = 4.6 × 10−4s−1; for 2 ΔH‡ = 24.2 ± 0.2 kcal/mol, ΔS‡ = −2.0 e.u., ΔG‡ = 24.9 kcal/mol, k1 (60°C) = 9.2 × 10−4s−1. Thermolysis of 1–2 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) (chemiexcitation yields for 1: ϕT = 0.02, ϕS ≤ 0.0005; for 2: ϕT = 0.02, ϕS ≤ 0.0004). The results are discussed in relation to a diradical‐like mechanism. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:176–179, 2001  相似文献   

20.
7‐(4‐Fluorophenyl) and 7‐phenyl‐substituted 1,3‐diphenyl‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl radicals were characterized by X‐ray diffraction analysis and variable‐temperature magnetic susceptibility studies. The radicals pack in 1D π stacks of equally spaced slipped radicals with interplanar distances of 3.59 and 3.67 Å and longitudinal angles of 40.97 and 43.47°, respectively. Magnetic‐susceptibility studies showed that both radicals exhibit antiferromagnetic interactions. Fitting the magnetic data revealed that the behavior is consistent with 1D regular linear antiferromagnetic chain with J=?12.9 cm?1, zJ′=?0.4 cm?1, g=2.0069 and J=?11.8 cm?1, zJ′=?6.5 cm?1, g=2.0071, respectively. Magnetic‐exchange interactions in benzotriazinyl radicals are sensitive to the degree of slippage, and inter‐radical separation and subtle changes in structure alter the fine balance between ferro‐ and antiferromagnetic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号