首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient and convenient synthesis of benzofurans has been described from phenacyl halides and o-hydroxy benzaldehyde in the presence of DABCO. The procedure is applicable for a variety of phenacyl halides and provide a variety of benzofurans. DABCO act as a base and as well as nucleophile.  相似文献   

2.
The carbocyclic analog of thymidine (C-Thymidine, 2 ) was converted to the analog of 3′-(O-methanesulfonyl)-5′-O-tritylthymidine, which was cyclized in alkaline solution or with 1,5-diazabicyclo[5.4.0]undec-5-ene (DBU) to the carbocyclic analog of 5′-O-trityl-2,3′-anhydrothymidine ( 6 ). Hydrolysis of the latter compound produced the carbocyclic analog of all-cis-thymidine. C-Thymidine was also converted to the carbocyclic analog of 3′-O-acetyl-2,5′-anhydrothymidine ( 12 ) by treating the 5′-O-methanesulfonyl analog with DBU. Hydrolysis of the anhydro derivative gave back C-Thymidine. The carbocyclic analog ( 3 ) of 3′-deoxy-2′-hydroxythymidine was converted similarly to the corresponding 2,2′-anhydrothymidine ( 15 ) and 2,5′-anhydrothymidine ( 21 ) analogs. As expected, C-5′-O-trityl-2,2′-anhydrothymidine formed more readily than did the 2,3′-anhydrothymidine analog. Hydrolysis of these 2,2′- and 2,5′-anhydrothymidine analogs gave, respectively, the carbocyclic analog of all-cis-3′-deoxy-2′-hydroxythymidine and 3 .  相似文献   

3.
Electron‐transporting organic semiconductors (n‐channel) for field‐effect transistors (FETs) that are processable in common organic solvents or exhibit air‐stable operation are rare. This investigation addresses both these challenges through rational molecular design and computational predictions of n‐channel FET air‐stability. A series of seven phenacyl–thiophene‐based materials are reported incorporating systematic variations in molecular structure and reduction potential. These compounds are as follows: 5,5′′′‐bis(perfluorophenylcarbonyl)‐2,2′:5′,‐ 2′′:5′′,2′′′‐quaterthiophene ( 1 ), 5,5′′′‐bis(phenacyl)‐2,2′:5′,2′′: 5′′,2′′′‐quaterthiophene ( 2 ), poly[5,5′′′‐(perfluorophenac‐2‐yl)‐4′,4′′‐dioctyl‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene) ( 3 ), 5,5′′′‐bis(perfluorophenacyl)‐4,4′′′‐dioctyl‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene ( 4 ), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 5 ), 2,7‐bis[(5‐phenacyl)thiophen‐2‐yl]‐9,10‐phenanthrenequinone ( 6 ), and 2,7‐bis(thiophen‐2‐yl)‐9,10‐phenanthrenequinone, ( 7 ). Optical and electrochemical data reveal that phenacyl functionalization significantly depresses the LUMO energies, and introduction of the quinone fragment results in even greater LUMO stabilization. FET measurements reveal that the films of materials 1 , 3 , 5 , and 6 exhibit n‐channel activity. Notably, oligomer 1 exhibits one of the highest μe (up to ≈0.3 cm2 V?1 s?1) values reported to date for a solution‐cast organic semiconductor; one of the first n‐channel polymers, 3 , exhibits μe≈10?6 cm2 V?1 s?1 in spin‐cast films (μe=0.02 cm2 V?1 s?1 for drop‐cast 1 : 3 blend films); and rare air‐stable n‐channel material 5 exhibits n‐channel FET operation with μe=0.015 cm2 V?1 s?1, while maintaining a large Ion:off=106 for a period greater than one year in air. The crystal structures of 1 and 2 reveal close herringbone interplanar π‐stacking distances (3.50 and 3.43 Å, respectively), whereas the structure of the model quinone compound, 7 , exhibits 3.48 Å cofacial π‐stacking in a slipped, donor‐acceptor motif.  相似文献   

4.
A facile synthesis of Pechmann dyes has been accomplished by the reaction of substituted N‐phenacyl‐4‐dimethylaminopyridinium halides with dimethyl maleate in the presence of DBU. Based on a related 4‐DMAP elimination product and an isolated monolactone intermediate a reaction mechanism has been proposed. The scope of this synthetic method is determined by the availability of α‐haloaroyl or heteroaroyl derivatives. DBU=1,8‐diazabicycloundec‐7‐ene, DMAP=4‐dimethylaminopyridine.  相似文献   

5.
The reaction of tris(2‐pyridyl)phosphine oxides with benzeneselenenyl chloride in methanol gave the corresponding 5‐phenylseleno‐2,2′‐bipyridyls together with a small amount of 2,2′‐bipyridyls. Similarly, the reaction with arenesulfenyl chlorides in aqueous acetonitrile afforded two kinds of coupling products, 5‐phenylthio‐2,2′‐bipyridyls and 2,2′‐bipyridyls. While in the reaction with arenesulfinyl chlorides in aqueous acetonitrile, four corresponding bipyridyl derivatives, 2,2′‐bipyridyls, 5‐arylthio‐2,2′‐bipyridyls, 5‐arylsulfinyl‐2,2′‐bipyridyls, and 5‐arylsulfonyl‐2,2′‐bipyridyls, were formed. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:72–81, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10085  相似文献   

6.
Manojit Pal 《Tetrahedron》2004,60(18):3987-3997
1,8-Diazabicyclo[5.4.0]undec-7ene (DBU) facilitated the oxidative cyclization of phenacyl amide in the presence of atmospheric oxygen under environmentally friendly conditions. The reaction has been studied under various conditions and a plausible mechanism is proposed. This ‘green’ reaction proceeds via intramolecular ring closure of the amide followed by subsequent reaction with molecular oxygen where DBU played a crucial role. A variety of phenacyl amides were treated with DBU in acetonitrile under an oxygen atmosphere to give the symmetrical/unsymmetrical 3,4-diarylsubstituted maleimides in good yields. Corresponding pyrrolin-2-ones however, were obtained in good to excellent yields when K2CO3 was used in place of DBU affording a practical synthesis of these compounds of potential biological interest.  相似文献   

7.
α‐Imidazolformylarylhydrazine 2 and α‐[1,2,4]triazolformylarylhydrazine 3 have been synthesized through the nucleophilic substitution reaction of 1 with imidazole and 1,2,4‐triazole, respectively. 2,2′‐Diaryl‐2H,2′H‐[4,4′]bi[[1,2,4]‐triazolyl]‐3,3′‐dione 4 was obtained from the cycloaddition of α‐chloroformylarylhydrazine hydrochloride 1 with 1,2,4‐triazole at 60 °C and in absence of n‐Bu3N. The inducing factor for cycloaddition of 1 with 1,2,4‐triazole was ascertained as hydrogen ion by the formation of 4 from the reaction of 3 with hydrochloric acid. 4 was also acquired from the reaction of 3 with 1 and this could confirm the reaction route for cycloaddition of 1 with 1,2,4‐triazole. Some acylation reagents were applied to induce the cyclization reaction of 2 and 3.1 possessing chloroformyl group could induce the cyclization of 2 to give 2‐aryl‐4‐(2‐aryl‐4‐vinyl‐semicarbazide‐4‐yl)‐2,4‐dihydro‐[1,2,4]‐triazol‐3‐one 6. 7 was obtained from the cyclization of 2 induced by some acyl chlorides. Acetic acid anhydride like acetyl chloride also could react with 2 to produce 7D . 5‐Substituted‐3‐aryl‐3H‐[1,3,4]oxadiazol‐2‐one 8 was produced from the cyclization reaction of 3 induced by some acyl chlorides or acetic acid anhydride. The 1,2,4‐triazole group of 3 played a role as a leaving group in the course of cyclization reaction. This was confirmed by the same product 8 which was acquired from the reaction of 1 , possessing a better leaving group: Cl, with some acyl chlorides or acetic acid anhydride.  相似文献   

8.
A facile synthesis of 2,3-disubstituted benzofurans from ortho oxyether aroylformates has been developed. Under the mediation of DBU, the intramolecular annulation of ortho oxyether aroylformates proceeds smoothly to provide the corresponding 2,3-disubstituted benzofurans in moderate to good yields under mild conditions. Furthermore, a one-pot two-step synthesis of 2,3-disubstituted benzofurans has also been demonstrated from readily available ortho hydroxy aroylformates.  相似文献   

9.
A new bis(o‐aminophenol) with a crank and twisted noncoplanar structure and ether linkages, 2,2′‐bis(4‐amino‐3‐hydroxyphenoxy)biphenyl, was synthesized by the reaction of 2‐benzyloxy‐4‐fluoronitrobenzene with biphenyl‐2,2′‐diol, followed by reduction. Biphenyl‐2,2′‐diyl‐containing aromatic poly(ether benzoxazole)s with inherent viscosities of 0.52–1.01 dL/g were obtained by a conventional two‐step procedure involving the polycondensation of the bis(o‐aminophenol) monomer with various aromatic dicarboxylic acid chlorides, yielding precursor poly(ether o‐hydroxyamide)s, and subsequent thermal cyclodehydration. These new aromatic poly(ether benzoxazole)s were soluble in methanesulfonic acid, and some of them dissolved in m‐cresol. The aromatic poly(ether benzoxazole)s had glass‐transition temperatures of 190–251 °C and were stable up to 380 °C in nitrogen, with 10% weight losses being recorded above 520 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2656–2662, 2002  相似文献   

10.
A variety of 3″,5″‐diaryl‐3″H,4′H‐dispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]thiadiazol]‐4′‐ones 3a‐c were synthesized regioselectively through the reaction of 4′H,5H‐trispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]oxadithiino[5,6‐c]chromene‐5″,1″′‐cyclohexan]‐4′‐one ( 1 ) with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 2a‐c ) in refluxing dry toluene. Single crystal X‐ray diffraction studies of 3a,b add support for the established structure. Similarly, 3′,5′‐diaryl‐2,2‐dimethyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5a‐c were obtained in a regioselective manner through the reaction of 2,2,5′,5′‐tetramethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino[5,6‐c]chromen]‐4‐one ( 4a ) with nitrilimines under similar reaction conditions. On the other hand, reaction of 2,5′‐diethyl‐2,5′‐dimethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino‐[5,6‐c]chromen]‐4‐one ( 4b ) with nitrilimines in refluxing dry toluene afforded the corresponding 3′,5′‐diaryl‐2‐ethyl‐2‐methyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5d‐f as two unisolable diastereoisomeric forms.  相似文献   

11.
Our laboratory has reported the elaboration of an iterative strategy for the synthesis of dendritic macromolecules from conventional monomers. This synthetic method involves a combination of self‐regulated metal‐catalyzed living radical polymerization initiated from arenesulfonyl chlorides and an irreversible terminator multifunctional initiator (TERMINI). The previous TERMINI, (1,1‐dimethylethyl)[[1‐[3,5‐bis(S‐phenyl‐4‐N,N′ diethylthiocarbamate)phenyl]ethenyl]oxy]dimethylsilane, was prepared in nine reaction steps. The replacement of the previous TERMINI with one that requires only three steps for its synthesis, diethylthiocarbamic acid S‐{3‐[1‐(tert‐butyl‐dimethyl‐silanyloxy)‐vinyl]‐5‐diethylcarbamoylsulfanyl‐phenyl} ester, and the use of the more reactive Cu2S/2,2′‐bipyridine rather than the Cu2O/2,2′‐bipyridine self‐regulated catalyst have generated an accelerated method for the synthesis of dendritic macromolecules. This method provides rational design strategies for the synthesis of dendritic macromolecules with different compaction by the use of a single monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4894–4906, 2005  相似文献   

12.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

13.
New aromatic dicarboxylic acids having kink and crank structures, 2,2′-bis(p-carboxyphenoxy) biphenyl and 2,2′-bis(p-carboxyphenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluorobenzonitrile with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by hydrolysis. Biphenyl-2,2′-diyl-and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.58–1.46 dL/g and 0.63–1.30 dL/g, respectively, were obtained by the low-temperature solution polycondensation of the corresponding diacid chlorides with aromatic diamines. These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 210–272 and 260–315°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 450°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
New aromatic diamines having kink and crank structures, 2,2′-bis(p-aminophenoxy)biphenyl and 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluoronitrobenzene with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by catalytic reduction. Biphenyl-2,2′-diyl- and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.44–1.18 and 0.26–0.88 dL/g, respectively, were obtained either by the direct polycondensation or low-temperature solution polycondensation of the diamines with aromatic dicarboxylic acids (or diacid chlorides). These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 215–255 and 266–303°C, respectively. They began to lose weight at ca. 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The recyclization of readily available 1-(benzoylmethylanilino)-3-imino-3H-2-cyanopyrrolizines using the DBU organic superbase, unexpectedly gave 2,2′-bipyrroles with amino, keto and cyano functional groups on one of the pyrrole rings in 83–94% yield. Previously, using the KOH/DMSO system, this recyclization led to 2,3′-bipyrroles in low yields (12–26%). This selective switching was explained by sterically hindered access for the intermediate carbanion to the 1-position of the pyrrolizine ring due to the large size of the accompanying DBU countercation. The new methodology opens an efficient route to pharmaceutically and synthetically useful densely functionalized 2,2′-bipyrroles.  相似文献   

16.
2,2′‐Bipyridyls have been utilized as indispensable ligands in metal‐catalyzed reactions. The most streamlined approach for the synthesis of 2,2′‐bipyridyls is the dehydrogenative dimerization of unfunctionalized pyridine. Herein, we report on the palladium‐catalyzed dehydrogenative synthesis of 2,2′‐bipyridyl derivatives. The Pd catalysis effectively works with an AgI salt as the oxidant in the presence of pivalic acid. A variety of pyridines regioselectively react at the C2‐positions. This dimerization method is applicable for challenging substrates such as sterically hindered 3‐substituted pyridines, where the pyridines regioselectively react at the C2‐position. This reaction enables the concise synthesis of twisted 3,3′‐disubstituted‐2,2′‐bipyridyls as an underdeveloped class of ligands.  相似文献   

17.

Abstract  

Potassium hydrazinecarbodithioate were prepared by treatment of acid hydrazides with carbon disulfide in the presence of potassium hydroxide. Reaction of this potassium salt with hydrazine hydrate, phenacyl bromide, or hydrazonoyl chlorides afforded 1,2,4-triazole, 1,3-thiazole, and 1,3,4-thiadiazoles. Reaction of 1,2,4-triazole with phenacyl bromide or hydrazonoyl chlorides afforded the corresponding 1,2,4-triazolo[3,4-b][1, 3, 4]-thiadiazines. All these new compounds were screened for antibacterial and antifungal activity. Some had promising activity.  相似文献   

18.
The syntheses of phenacyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate and allyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate are reported. Reactions of these 2H‐azirin‐3‐amine derivatives with Z‐protected amino acids have shown them to be suitable synthons for the Aib‐Pro unit in peptide synthesis. After incorporation into the peptide by means of the ‘azirine/oxazolone method’, the C‐termini of the resulting peptides were deprotected selectively with Zn in AcOH or by a mild Pd0‐promoted procedure, respectively.  相似文献   

19.
Acyl chlorides reacted with ammonium thiocyanate and carbonic dihydrazide under phase‐transfer catalysis to first afford 2,2′‐bis(acylaminothiocarbonyl)‐carbonic dihydrazides, which further cyclized in the presence of glacial acetic acid to efficiently give 1‐(5′‐acylamino‐1′,3′,4′‐thiadiazol‐2′‐yl)‐4‐acyl‐thiosemicarbazides in high yield.  相似文献   

20.
《中国化学》2017,35(11):1749-1754
Triphenylphosphine and salicylaldimine could be used as a mixed ligand system to obtain a high catalytic activity for palladium catalyzed diarylation of primary anilines with unactivated aryl chlorides by the synergistic effect of ligands. The activity and selectivity of the catalytic system could be improved by modifying the structure of salicylaldimine. In refluxing o ‐xylene, PdCl2(Ph3P)2 with 2,5‐ditrifluoromethyl N ‐phenylsalicylaldimine as a coligand shows high efficiency for the diarylation of various anilines. The catalytic system shows good toleration for the steric hindrance of the substrates. The facile catalytic system works as well on the multiple arylation of 1,1′‐biphenyl‐ 4,4′‐diamine with aryl chlorides to afford N ,N ,N′ ,N′ ‐tetraaryl‐1,1′‐biphenyl‐4,4′‐diamines which are important intermediates of organic light emitting diode (OLED) hole transport materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号