首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Several new derivatives of oxazolo[5,4‐d]pyrimidine ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h ) have been synthesized through the reaction of 2,4‐dichloro‐6‐methyl‐5‐nitropyrimidine ( 2 ) with aryl carboxylic acids in refluxing POCl3. Further treatment of compounds ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h ) with hydrazine hydrate gave the hydrazine derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h ) that were subsequently cyclized into a novel heterocyclic system, oxazolo[5,4‐d][1,2,4]triazolo[4,3‐a]pyrimidine ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m , 5n , 5o , 5p ) and ( 7a , 7b , 7c , 7d ) on treatment with triethylorthoesters or carbondisulfide and alkylhalides, respectively.  相似文献   

2.
A series of novel 6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐7‐phenylpyrazolo[1,5‐a]pyrimidines, 5‐phenyl‐6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]imidazo[1,2‐a]pyrimidines, and 2‐phenyl‐3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]pyrimido[1,2‐a]benzimidazoles have been synthesized in four steps starting with 2‐hydroxyacetophenone. The intermediate 3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐4H‐1‐benzopyran‐4‐ones reacted with pyrazol‐3‐amines, 5‐methylpyrazol‐3‐amine, and 1H‐imidazol‐2‐amine, 1H‐benzimidazol‐2‐amine via a cyclocondensation to give the title compounds in the presence of MeONa as base, respectively. The approach affords the target compounds in acceptable‐to‐good yields. The new compounds were characterized by their IR, NMR, and HR mass spectra.  相似文献   

3.
The reaction of 4-chloro-5-cyano-2-methylthiopyrimidine (I) with ethyl mercaptosuccinate (II) in refluxing ethanol containing sodium carbonate has afforded diethyl 3-amino-2-(methyl-thio)-7H-thiopyrano[2,3-d]pyrimidine-6,7-dicarboxylate (IV). Displacement of the methylthio group in IV with hydrazine gave the corresponding hydrazino derivative which underwent Schiff base formation with benzaldehyde or 2,6-dichlorobenzaldehyde. Treatment of IV in refluxing acetic anhydride afforded the corresponding diacetylated amino derivative. Partial saponification of IV with sodium hydroxide gave 5-amino-2-(methylthio)-7H-thiopyrano-[2,3-d]pyrimidine 6,7-dicarboxylic acid 6 ethyl ester (VIII). The reaction of 4-amino-6-chloro-5-cyano-2-phenylpyrirnidine (XI) with II resulted in the formation of ethyl 4-amino-6-(ethoxy-carbonyl)-5,6-dihydro-5-amino-2-phenylthieno[2,3-d]pyrimidine-6-acetate (XIII) which when subjected to hydrolysis gave ethyl 4,5-diamino-2-phenylthieno[2,3-d]pyrimidine-6-acetate isolated as the hydrochloride (XIV). Diazotization of IV with sodium nitrite in acetic acid unexpectedly afforded diethyl 5-(acetyloxy)-6,7-dihydro-6-hydroxy-2-(methylthio)-5H-thio-pyrano[2,3-d]pyrimidine-6,7-diearboxylate (XV). Several structural ambiguities were resolved by ir and pmr spectra.  相似文献   

4.
1,3‐Di(thiophen‐2‐yl)prop‐2‐en‐1‐one ( 1 ) was utilized in the synthesis of 4,6‐di(thiophen‐2‐yl)‐3,4‐dihydropyrimidine‐2(1H)‐thione ( 2 ) and 5,7‐di(thiophen‐2‐yl)‐2‐thioxo‐2,3‐dihydropyrido[2,3‐d]pyrimidin‐4(1H)‐one ( 4 ). The latter thiones were used in the synthesis of two new series of [1,2,4]triazolo[4,3‐a]pyrimidines 10a – i and pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidinones 5a – i via reaction with the appropriate hydrazonoyl halides using triethylamine as a basic catalyst in dioxane. The mechanism of formation of the synthesized compounds was discussed, and the assigned structure was established via microanalysis, spectral data (infrared, 1H NMR, and Mass), and density functional calculations. Moreover, the newly synthesized products were evaluated for their antimicrobial activities, and the results show that some derivatives have been well with mild activities. Finally, quantum chemistry calculations confirmed the mechanism and structure of the products.  相似文献   

5.
2‐Benzyl‐ and 2‐aryloxymethyl‐3‐amino‐1‐phenyl‐pyrazolo[3,4‐d]pyrimidine‐4‐ones 5a–f have been synthesized by reacting the corresponding arylacetylamino derivatives 3a–f with hydrazine hydrate. Thionation of compounds 5d–f by action of P2S5 in pyridine yielded 2‐aryloxy‐methyl‐3‐amino‐1‐pheny‐lpyrazolo[3,4‐d]pyrimidin‐4‐thions 6a–c . 2,5‐Diphenyl‐2,3‐dihydro‐1H‐pyrazolo[5′,1′:4:5]pyrazolo[3,4‐d]pyrimidine‐8‐one ( 8 ) was also obtained via reaction of ethyl‐2‐cinnamoylamino‐1‐phenyl‐pyrazole‐4‐car‐boxylate ( 7 ) with hydrazine hydrate. The prepared compounds were screened in vitro for their antimicrobial activity. Some of the tested compounds were found to be active at 100 μg/ml compared with reference compounds (Ampicillin and Trivid) as antibacterial agents and claforan as antifungal agent. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:530–534, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10187  相似文献   

6.
A series of pyrano[2,3‐d ]pyrimidine derivatives have been synthesized by the reaction of 2‐amino‐3‐cyano‐4H‐pyrans and acetic anhydride with acid catalyst . This method is very efficient because of short reaction times and easy work‐up, and it provides an efficient and promising synthetic strategy for the construction of the tetracyclic pyrano[2,3‐d ]pyrimidine skeleton. The X‐ray crystal structures of products are confirmed, and the possible mechanism is provided in this paper.  相似文献   

7.
Some new 7,9-disubstituted 7H-1,2,3,4-tetrazolo[1,5-c]pyrrolo[3,2-e]pyrimidines 5 have been synthesized either by diazotization of 4-hydrazino-5,7-disubstituted-7H-pyrrolo[2,3-d]pyrimidines 4 obtained by hydrazinolysis of 4-chloro-5,7-disubstituted-7H-pyrrolo[2,3-d]pyrimidines 3 or via a substitution reaction between 3 and sodium azide. 5,7-Disubstituted-7H-pyrrolo[2,3-d]pyrimidin-4(3H)-ones 2 were obtained by cyclocondensation of 2-amino-3-cyano-1,4-disubstituted pyrroles 1 with formic acid which on chlorination using phosphorus oxychloride afforded 3 . A novel route for the synthesis of 4-amino-5,7-disubstituted-7H-pyrrolo[2,3-d]pyrimidines 6 by the reductive ring cleavage of 5 has been reported.  相似文献   

8.
A series of novel sulfone‐containing pyrazolo[1,5‐a]pyrimidines ( 2‐3 ) and pyrazolo[5,1‐d][1,2,3,5]tetra‐zine‐4(3H)‐ones ( 5a‐5k ) were designed and efficiently synthesized, some of which have been identified as being potential rape inhibitors. These results widen the structural diversity of rape inhibitors and confirm the perspectives of further investigations in this area. Moreover, a plausible reaction mechanism is outlined.  相似文献   

9.
5‐Oxo‐5H‐[1,3]thiazolo[3,2‐a]pyrimidine‐6‐carboxylic acid ( 4 ), and 6‐methylimidazo[2,1‐b]thiazole‐5‐carboxylic acid ( 17 ) were reacted with amines 6a‐i by the reaction with oxalyl chloride and N, N‐di methyl‐formamide as a catalyst into primary and secondary amide derivatives 7‐14 and 19‐22. From compound 24 N,N'‐disubstituted ureas 26, 27 and perhydroimidazo[1,5‐c]thiazole 29 derivatives of imidazo[2,1‐b]thiazole were prepared. By nmr analysis of compound 29 , the existence of two stereoisomers resulting from both optical, due to centre of chirality at C7′a, and conformational isomerism, due to restricted C5? N6′ bond rotation were proved.  相似文献   

10.
Some new derivatives of 3,5‐diaryl‐4‐imino‐5,7,8,9‐tetrahydro‐3H‐chromeno[2,3‐d ]pyrimidine have been prepared through a condensation reaction of 2‐amino‐4‐aryl‐3‐cyano‐5,6,7,8‐tetrahydrobenzo[b ]pyrans with triethyl orthoformate in boiling acetic anhydride followed by cyclization with primary aryl amines in the presence of a few drops triethylamine as catalyst in refluxing ethanol. The products were characterized on the basis of IR, 1H‐NMR, and 13C‐NMR spectral and microanalytical data.  相似文献   

11.
Synthesis of novel 2‐3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl‐4,10a‐diaryl‐1,10a‐dihydro‐2H‐benzo[d]pyrazino[2,1‐b][1,3]oxazoles 5 were simply achieved by the reaction of 2‐[3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl(2‐oxo‐2‐arylethyl)amino]‐1‐aryl‐1‐ethanones 3 with o‐aminophenol 4 in the presence of CAN catalyst. The intermediates, 2‐[3‐methyl‐5‐[(E)‐2‐aryl‐1‐ethenyl]‐4‐isoxazolyl(2‐oxo‐2‐arylethyl)amino]‐1‐aryl‐1‐ethanones 3 , were prepared by the reaction of 4‐amino‐3‐methyl‐5‐styrylisoxazole 1 , with phenacylbromides 2 in ethanol in the presence of K2CO3. The structures of the newly synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l and 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l have been confirmed by analytical and spectral data.  相似文献   

12.
A regioselective synthesis of novel pyrazolo[1,5‐a]pyrimidines, pyrazolo[1,5‐a]quinazoline and pyrimido[4′,5′:3,4]pyrazolo[1,5‐a]pyrimidines incorporating a thiazole moiety was described via the reactions of the versatile, readily accessible 5‐amino‐3‐(phenylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐1H‐pyrazole‐4‐carboxamide 3 with appropriate 1,3‐biselectrophilic reagents namely, β‐diketones, enaminones, and α,β‐unsaturated cyclic ketone. The newly synthesized compounds were elucidated by elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

13.
While 3(5)‐aminopyrazole reacts with enaminonitrile to yield pyrazolo[1,5‐a]pyrimidines, 3‐amino‐5‐pyrazolone reacts with the same reagents to yields pyrazolo[3,4‐b]pyridines.  相似文献   

14.
The reaction between 3‐(dimethylamino)/3,3‐bis(methylthio)‐1‐(substituted)prop‐2‐en‐1‐ones and 4‐substituted‐5‐amino‐1H‐pyrazoles afforded new pyrazole[1,5‐a]pyrimidines structurally related to Zaleplon. The chemical modifications introduced at the 3‐, 5‐, and 7‐positions of the bicyclic structure revealed new promising candidates for the treatment of sleep disorders.  相似文献   

15.
A series of new 2‐aryl‐5‐methyl‐[1,2,4]triazolo[1,5‐c ]quinazoline derivatives ( 5a – 5g ) have been synthesized by the reaction of 3‐amino‐2‐methylquinazolin‐4‐(3H )‐one ( 3 ) with aromatic nitriles in potassium tert ‐butoxide under reflux conditions. 3‐Amino‐2‐methylquinazolin‐4‐(3H )‐one ( 3 ) was synthesized by the reaction 2‐methyl‐4H ‐benzo[d ][1,3]oxazin‐4‐one ( 2 ) with hydrazine hydrate. The chemical structure of products was confirmed by IR, 1H, 13C NMR and elemental analysis. These compounds were screened for antibacterial [Staphylococcus aureus (ATCC 25923), Bacillus cereus (ATCC 11778), Micrococcus luteus (ATCC 9341), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853)] activities, using the zone inhibition method.  相似文献   

16.
New synthetic routes to pyrido[3,2-d]pyrimidines starting with 5-amino-1,3,6-trimethyluracil (I) or 1,3,6-trimethyl-5-nitrouracil (X) are described. Thus, condensation of I with arylaldehydes gave 5-arylideneamino-1,3,6-trimethyluracils (IIa-h), which upon heating with dimethylformamide dimethylacetal afforded 6-aryl-1,3-dimethylpyrido[3,2-d]pyrimidine-2,4(1H,3H)-diones (Va-h) via 5-arylideneamino-1,3-dimethyl-6-(2-dimethylaminovinyl)uracils (IIIa-h). On the other hand, reaction of X with phenylacetaldehyde in the presence of base yielded Va and its 5-oxide (XI).  相似文献   

17.
Twelve new 7‐aryl‐3‐cyanopyrazolo[1,5‐a]pyrimidines ( 3a‐f ) and ethyl 7‐arylpyrazolo[1,5‐a]pyrimidine‐3‐carboxylates ( 3g‐l ) have been conveniently synthesized by the reaction of enaminones with 5‐amino‐1H‐pyrazoles in good yields under microwave irradiation. With one substituded enaminone, only one regioiso‐mer was obtained. The structures of new compounds were fully confirmed by elemental analysis, ir, 1H nmr and X‐ray diffraction (XRD) analysis. A plausible reaction mechanism for the synthesis of title compounds is presented. The antifungal activities of some compounds are also reported.  相似文献   

18.
o‐Aminothiophene dicarbonitrile 1 on neat reaction with cyclic ketones in anhydrous ZnCl2 yielded mixture of fused aminopyridine 3 and iminospirooxazine 4 derivatives. Similarly, pyrimidine derivatives 5 and 8 were obtained by the reaction of this intermediate 1 with formic acid and DMF‐DMA followed by hydrazine hydrate, respectively. The reaction of o‐amino‐thiophene dicarboxamide 2 at ambient temperature with cyclic ketones yielded spiropyrimidine 10 as a sole product in quantitative yield. The regioselective anellated pyrimidine 9 , 11 , and dihydropyrimidine 12 derivatives were also obtained by the reaction with aromatic aldehydes in presence of piperidine and iodine respectively. J. Heterocyclic Chem., (2012).  相似文献   

19.
The ceric ammonium nitrate‐catalyzed synthesis of (E)‐5‐amino‐N‐(3‐methyl‐5‐styrylisoxazol‐4‐yl)‐2‐arylchromeno[4,3,2‐de][1,6]napthyridin‐4‐carboxamides 5 was simply achieved upon the one‐pot four‐component reaction of isoxazolyl cyanoacetamide 1 with malononitrile 2 , 2‐hydroxy acetophenone 3 , and aromatic aldehydes 4 in ethanol. Compounds 5 on heating with acetic anhydride underwent tandem N‐acetylation and cyclocondensation involving intramolecular cyclization to afford the title compounds (E)‐11‐methyl‐12‐(3‐methyl‐5‐styrylisoxazol‐4‐yl)‐2‐arylchromeno[4,3,2‐de][1,6]napthyridin‐13(12H)‐ones 6 in good yields. The chemical structures have been confirmed by analytical and spectral analyses.  相似文献   

20.
3(5)‐Aminopyrazole derivative ( 6 ) has been synthesized by the reactions of the versatile unreported 2‐cyano‐N ′‐(1‐(3‐methyl‐6‐phenylimidazo[2,1‐b ]thiazol‐2‐yl)ethylidene)acetohydrazide ( 3 ) with phenyl isothiocyanate in KOH/DMF solution followed by reaction with methyl iodide and hydrazine hydrate. Reaction of compound 6 with some 1,3‐dicarbonyl compounds yielded pyrazolo[1,5‐a ]pyrimidine derivatives ( 14 – 17 ). Alkylation of compound 6 with various halo reagents, followed by intramolecular cyclization, yielded the corresponding imidazo[1,2‐b ]pyrazole derivatives 27 , 29 , 31 , and 33 . All newly synthesized compounds were elucidated by considering the data of both elemental analysis and spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号