首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On the basis of analytical pseudo-potential calculations and extensive numerical simulations it is proved that the dynamic Kingdon trap is a working design for the permanent storage and the crystallization of laser-cooled ions.Dedicated to H. Walther on the occasion of his 60th birthday  相似文献   

2.
We investigate the connections between functions of type xn=p(θTzn) and nonlinear maps coupled to non-invertible transformations. These systems can produce unpredictable dynamics. We study the higher-order correlations in the generated sequences. We show that (theoretically) it is possible to construct systems that can generate sequences that constitute a set of statistically independent random variables. We apply the results in the improvement of a two-dimensional coupled map system that has been used in practical applications as e.g. cryptosystems and data compression.  相似文献   

3.
In [K. Wang, W.J. Pei, Z.Y. He, Y.M. Cheung, Phys. Lett. A 367 (2007) 316], an original symbolic vector dynamics based method has been proposed for initial condition estimation in additive white Gaussian noisy environment. The estimation precision of this estimation method is determined by symbolic errors of the symbolic vector sequence gotten by symbolizing the received signal. This Letter further develops the symbolic vector dynamical estimation method. We correct symbolic errors with backward vector and the estimated values by using different symbols, and thus the estimation precision can be improved. Both theoretical and experimental results show that this algorithm enables us to recover initial condition of coupled map lattice exactly in both noisy and noise free cases. Therefore, we provide novel analytical techniques for understanding turbulences in coupled map lattice.  相似文献   

4.
We investigate the effect of the phase difference of applied fields on the dynamics of mutually coupled Josephson junctions. A phase difference between the applied fields desynchronizes the system. It is found that though the amplitudes of the output voltage values are uncorrelated, a phase correlation is found to exist for small values of applied phase difference. The dynamics of the system is found to change from chaotic to periodic for certain values of phase difference. We report that by keeping the value of phase difference as π, the system continues to be in periodic motion for a wide range of values of system parameters. This result may find applications in devices like voltage standards, detectors, SQUIDS, etc., where chaos is least desired.  相似文献   

5.
We analyze a minimal model of a population of identical oscillators with a nonlinear coupling—a generalization of the popular Kuramoto model. In addition to well-known for the Kuramoto model regimes of full synchrony, full asynchrony, and integrable neutral quasiperiodic states, ensembles of nonlinearly coupled oscillators demonstrate two novel nontrivial types of partially synchronized dynamics: self-organized bunch states and self-organized quasiperiodic dynamics. The analysis based on the Watanabe-Strogatz ansatz allows us to describe the self-organized bunch states in any finite ensemble as a set of equilibria, and the self-organized quasiperiodicity as a two-frequency quasiperiodic regime. An analytic solution in the thermodynamic limit of infinitely many oscillators is also discussed.  相似文献   

6.
It was proposed about a decade ago [M.G.E. da Luz, A.S. Lupu-Sax, E.J. Heller, Phys. Rev. E 56 (1997) 2496] a simple approach for obtaining scattering states for arbitrary disconnected open or closed boundaries C, with different boundary conditions. Since then, the so called boundary wall method has been successfully used to solve different open boundary problems. However, its applicability to closed shapes has not been fully explored. In this contribution we present a complete account of how to use the boundary wall to the case of billiard systems. We review the general ideas and particularize them to single connected closed shapes, assuming Dirichlet boundary conditions for the C’s. We discuss the mathematical aspects that lead to both the inside and outside solutions. We also present a different way to calculate the exterior scattering S matrix. From it, we revisit the important inside-outside duality for billiards. Finally, we give some numerical examples, illustrating the efficiency and flexibility of the method to treat this type of problem.  相似文献   

7.
Based on the spin-phonon model we analyze the influence of surface and size effects on the phonon properties of ferromagnetic nanoparticles. A Green's function technique in real space enables us to calculate the renormalized phonon energy and its damping depending on the temperature and the anharmonic spin-phonon interaction constants. With decreasing particle size the phonon energy can decrease or increase for different surface spin-phonon interaction constants, whereas the damping increases always. The influence of an external magnetic field is discussed, too. The theoretical results are in reasonable accordance to experimental data.  相似文献   

8.
9.
Zhong-Fu Ren 《Physics letters. A》2009,373(41):3749-3752
A very simple and effective approach to nonlinear oscillators is suggested. Anyone with basic knowledge of advanced calculus can apply the method to finding approximately the amplitude-frequency relationship of a nonlinear oscillator. Some examples are given to illustrate its extremely simple solution procedure and an acceptable accuracy of the obtained solutions.  相似文献   

10.
We investigate the ground-state properties of the two-dimensional Hubbard model with an additional Holstein-type electron-phonon coupling on a square lattice. The effects of quantum lattice vibrations on the strongly correlated electronic system are treated by means of a variational squeezed-polaron wave function proposed by Zheng, where the possibility of static (frozen) phonon-staggered ordering is taken into account. Adapting the Kotliar-Ruckenstein slave boson approach to the effective electronic Hamiltonian, which is obtained in the vacuum state of the transformed phonon subsystem, our theory is evaluated within a two-sublattice saddle-point approximation at arbitrary band-filling over a wide range of electron-electron and electron-phonon interaction strengths. We determine the order parameters for long-range charge and/or spin ordered states from the self-consistency conditions for the auxilary boson fields, including an optimization procedure with respect to the variational displacement, polaron and squeezing parameters. In order to characterize the crossover from the adiabatic (=0) to the nonadiabatic (=) regime, the frequency dependencies of these quantities are studied in detail. In the predominant charge (spin) ordered phases the static Peierls dimerization (magnetic order) is strongly reduced with increasing . As the central result we present the slave boson ground-state phase diagram of the Holstein-Hubbard model for finite phonon frequencies.  相似文献   

11.
12.
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.  相似文献   

13.
The stability of two-ion crystals in a Paul trap with a dc component in the quadrupole potential has been studied with the use of the monodromy matrix. The pseudopotential model predicts crystals with the ions at rest either along the trap axis or in the radial plane. The solutions of the full equations of motion disagree with the predictions of the pseudopotential model when the radial and axial secular frequencies are nearly degenerate: the crystal is either unstable (as first noted by Emmertet al.) or exists in a previously unanticipated configuration in which the ions lie at an angle to the trap axes. A bifurcation diagram near the edge of the crystalline stability range does not support a frequency-doubling route to chaos.Dedicated to H. Walther on the occasion of his 60th birthday  相似文献   

14.
Statistical mechanics explains many localization phenomena of lattices such as the discrete nonlinear Schrödinger equation. However, numerical simulations show that the complete thermalization is rarely achieved. Instead, one observes metastable statistical states that are robust when excited locally. This paper investigates thermodynamically metastable states where the trajectory is confined to some part of the energy shell. The partition function and the entropy are computed with a perturbation method. This method is applicable to stable and metastable states, and it allows us to give approximative analytic expressions for the entropy in the complete thermodynamic state space.  相似文献   

15.
It is commonly accepted that realistic networks can display not only a complex topological structure, but also a heterogeneous distribution of connection weights. In addition, time delay is inevitable because the information spreading through a complex network is characterized by the finite speeds of signal transmission over a distance. Weighted complex networks with coupling delays have been gaining increasing attention in various fields of science and engineering. Some of the topics of most concern in the field of weighted complex networks are finding how the synchronizability depends on various parameters of the network including the coupling strength, weight distribution and delay. On the basis of the theory of asymptotic stability of linear time-delay systems with complex coefficients, the synchronization stability of weighted complex dynamical networks with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of the synchronization state. Finally, an example is given as an illustration testing the theoretical results.  相似文献   

16.
Yanhong Zhao 《Physics letters. A》2008,372(48):7165-7171
This Letter investigates projective synchronization between the drive system and response complex dynamical system. An impulsive control scheme is adapted to synchronize the drive-response dynamical system to a desired scalar factor. By using the stability theory of the impulsive differential equation, the criteria for the projective synchronization are derived. The feasibility of the impulsive control of the projective synchronization is demonstrated in the drive-response dynamical system.  相似文献   

17.
The Letter studies the projective synchronization of a class of delayed chaotic systems. The drive-response system can be synchronized to within a desired scaling factor via impulsive control. Some sufficient conditions are derived by the stability analysis of the impulsive functional differential equations. An illustrative example is provided to show the effectiveness and feasibility of the proposed method and results.  相似文献   

18.
Raman spectra of bismuth ferrite (BiFeO3) over the frequency range of 100-1500 cm−1 have been systematically investigated with different excitation wavelengths. The intensities of the two-phonon modes are enhanced obviously under the excitation of 532 nm wavelength. This is attributed to the resonant behavior when incident laser energy closes to the intrinsic bandgap of BiFeO3. The Raman spectra of BiFeO3 excited at 532 nm were measured over the temperature range from 77 to 678 K. Besides the abnormal changes of the peak position and the linewidth of the A1 mode at 139 cm−1, the prominent frequency shift, the line broadening and the decrease of the intensity for the two-phonon mode at 1250 cm−1 were observed as the temperature increased to Néel temperature (TN). All these results indicate the existence of strong spin-phonon coupling in BiFeO3.  相似文献   

19.
We investigate the dynamical response of the neuron system to a feeble external signal by using the Hindmarsh-Rose model, when the system is tuned below the first bifurcation point, which corresponds to the period-1 bursting state, and an external signal with a fixed period of about 170s is introduced to the system. It is found that to respond to the outside signal, the system changes from the period-1 state to a period-2 one with variation of the signal amplitude, indicating the occurrence of state-to-state transition (SST). Moreover, when a signal with different fixed periods is introduced, we can also find a similar transition between other states. Furthermore, the effect of the frequency of the signal on the transition is also discussed. These results may imply that SST plays a constructive role in information processing in neuron systems.  相似文献   

20.
Since the Laplacian matrices of weighted networks usually have complex eigenvalues, the problem of complex synchronized regions should be investigated carefully. The present Letter addresses this important problem by converting it to a matrix stability problem with respect to a complex parameter, which gives rise to several types of complex synchronized regions, including bounded, unbounded, disconnected, and empty regions. Because of the existence of disconnected synchronized regions, the convexity characteristic of stability for matrix pencils is further discussed. Then, some efficient methods for designing local feedback controllers and inner-linking matrices to enlarge the synchronized regions are developed and analyzed. Finally, a weighted network of smooth Chua's circuits is presented as an example for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号